AFAMRL-TR-80-140 08277 # MULTIPLE EJECTION EFFECTS ANALYSIS G. A. Freeman G. R. Casteel Rockwell International Corporation North American Aircraft Division Los Angeles, California 90009 El Segundo FILE COP! AUGUST 1981 昌 Approve for public release; distribution unlimited AEROSPACE MEDICAL RESEARCH LABORATORY AEROSPACE MEDICAL DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 1/3 81 12 09 011 #### MOTICES When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whateover, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sail any patented invention that may in any way be related thereto. Please do not request copies of this report from Air Force Aerospace Medical Research Laboratory. Additional copies may be purchased from: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to: Defense Documentation Center Cameron Station Alexandria, Virginia 22314 #### **TECHNICAL REVIEW AND APPROVAL** AFAMRL-TR-80-140 This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations. This technical report has been reviewed and is approved for publication. FOR THE COMMANDER HENNING E. VON GIERKE Director Biodynamics and Bioengineering Division Air Force Aerospece Medical Research Laboratory Heir E. van Cissi SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | REPORT DOCUMENTATION PAGE | | READ INSTRUCTIONS
BEFORE COMPLETING FORM | | | |--|--|---|--|--| | NEPONY NUMBER | 5. 5571 HGG 255.5. | 3. RECIPIENT'S CATALOG NUMBER | | | | AFAMRL-TR-80-140 | AD-A108 2 | 71 | | | | 4. TITLE (and Subtitio) | | S. TYPE OF REPORT & PERIOD COVERED Final | | | | | | 8 May - 30 December 1980 | | | | MULTIPLE EJECTION EFFECTS ANALYS | SIS | 6. PERFORMING ORG. REPORT NUMBER NA-80-545 | | | | 7. AUTHOR(s) | | B. CONTRACT OR GRANT NUMBER(s) | | | | G. A. Freeman | | | | | | G. R. Casteel | | F33615-80-C-0519 | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS Rockwell International Corporat | | 10 PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | | North American Aircraft Division | n | 62202F; 7231-13-11 | | | | Los Angeles, CA 90009 | | | | | | Air Force Aerospace Medical Res | earch Laboratory, | 12. REPORT DATE AUGUST 1981 | | | | Aerospace Medical Division, Air | and the second s | 13 NUMBER OF PAGES | | | | Command, Wright-Patterson Air F | orce Base. Ohio | 5433 93 | | | | 14 MONITORING AGENCY NAME & ADDRESS/I dillore | nt from Controlling Office) | 15 SECURITY CLASS. (of this report) | | | | | | Unclassified | | | | | | 15. DECLASSIFICATION DOWNGRADING SCHEDULE N/A | | | | 16. DISTRIBUTION STATEMENT (of this Report) | | | | | | Approved for public release, di | stribution unlimi | ted. | | | | 17. DISTRIBUTION STATEMENT (of the ebatract entered | d in Block 20, if dillorent free | m Report) | | | | 18. SUPPLEMENTARY NOTES | | | | | | escape system, ejection seats, aerodynamic coefficients, seat/seat proximity, seat/forebody proximity, seat performance, human engineering/biomechanical, dynamic response index, acceleration radical | | | | | | Wind tunnel data for the ACES-Bl ejection seat in the presence of the B-1 forebody are documented and analyzed. Significant aerodynamic interactions exist at high speed between dual seats and between seat/forebody. Trajectory data are presented with and without the forebody effect upon the seat. The forebody flow field is shown to increase the human engineering/biomechanical problems during high-speed ejection. | | | | | DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY (2) (SS) FICATION OF THIS PAG ... Sen Jero Entered) 11/4/1 #### SUMMARY This report contains an analysis of wind tunnel data for the ACES-Bl ejection seat in the presence of the B-l forebody. The analysis is intended to show the importance of aerodynamic interactions at high speed between dual seats and between a single seat and the forebody. Wind tunnel data for single and side-by-side ejection modes are presented in tabulated form. The data are analyzed to determine the effect of separation distance, forebody pitch and yaw, Mach number, seat location and transition, and side-by-side seating. Seat trajectory data were calculated with and without the forebody flow field for a single seat ejecting from the pilot location. Ejection accelerations and angular rates were calculated for ejection conditions of 400, 500, and 600 KEAS at sea level and 600 KEAS at 35,000 feet. The results are analyzed to determine the incremental influence of the forebody on the seat accelerations and angular rates during ejection. The aero data analysis indicates that the forebody flow field effects are a primary function of separation distance, seat location, and Mach number. The lateral-directional interactions between side-by-side seats were found to be powerful at supersonic speed. The trajectory analysis demonstrated that it would not have been possible to accurately simulate the ACES-Bl seat performance without including the forebody influence at high speed. Human engineering and biomechanical analysis revealed that the forebody flow field increases the crewman's risk of injury at high speed. This result was found to be related to configuration features that may also be present in future designs. | Acces | sion For | | |--------------------|-----------|------| | NTIS | GRA&I | | | DIIG | TAB | | | Upann | ounced | | | Justi | fication_ | | | | | | | By | | | | Distribution/ | | | | Availability Codes | | | | • | Avail and | i/or | | Dist | Special | Ļ | | 4 | | | | П | | | #### PREFACE This final engineering report covers the work performed under contract F33615-80-C-0519 from 8 May to 30 December 1980 under the technical direction of Mr. James W. Brinkley, chief, Biomechanical Protection Branch, Biodynamics and Bioengineering Division of the Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Chio. The study was conducted by the Aerodynamics Group of Rockwell International Corporation (Rockwell), North American Aircraft Division (NAAD), Los Angeles, California. The performance of the study was under the general direction of Mr. G. R. Casteel, lead aerodynamicist. Work described in this report was performed by the following personnel: Mr. G. R. Casteel and Mr. G. A. Freeman were responsible for the aerodynamic analysis of wind tunnel data and the ACES-B1 simulation, and Mr. R. J. Cummings was responsible for the human engineering/biomedical analysis of the ACES-B1 simulation. The same of the same of # TABLE OF CONTENTS | Section | | Page | |----------|---------------------------------------|------| | I | INTRODUCTION | 8 | | II | WIND TUNNEL INVESTIGATION | 10 | | | Test Description | 10 | | | Analysis of Data | 14 | | | Effect of Separation
Distance | 14 | | | Aircraft Pitch and Yaw | 16 | | | Effect of Mach Number | 19 | | | Seat Location and Transition | 19 | | | Side-By-Side Seats | 26 | | III | MATH MODEL ANALYSIS | 33 | | | 6-DOF Math Model | 33 | | | Effect of Forebody Flow Field | 35 | | | Human Engineering/Biomedical Analysis | 45 | | IV | CONCLUSIONS | 47 | | APPENDIX | ACES-B1/B-1 FOREBODY WIND TUNNEL DATA | 48 | | | DECEDENCES | 22 | # LIST OF ILLUSTRATIONS | Figure | | Page | |--------|--|------| | 1 | 0.1-Scale Ejection Seats/B-1 Forebody Model | | | | in Wind Tunnel (Single Seat) | 11 | | 2 | 0.1-Scale Ejection Seats/B-1 Forebody Model | | | | in Wind Tunnel (Dual Seats) | 12 | | 3 | Wind Tunnel Model Installation/and Test Conditions | 13 | | 4 | General Arrangement of ACES-Bl Ejection Seats | 1.5 | | - | and B-1 Forebody | 15 | | 5 | Forebody Pressures Along Centerline, $\alpha_{A/C} = 0$, $\alpha_{A/C} = 0$. | 17 | | 6 | Effect of Angle of Attack on Longitudinal Coefficients | | | _ | $(M = 0.9, Left Forward Seat, \beta = 0, Aft Transition)$ | 18 | | 7 | Effect of Angle of Attack on the Lateral-Directional | | | | Coefficients (M = 0.9, β = 0, Left Forward Seat, Aft | | | _ | Transition) | 20 | | 8 | Effect of Angle of Sideslip on Longitudinal Coefficients | | | | $(M = 0.9, Left Forward Seat, \alpha = 17^{\circ}, Aft Transition$ | 21 | | 9 | Effect of Angle of Sideslip on Lateral-Directional | | | | Coefficients (M = 0.9, Left Forward Seat, α = 17°, Aft Transition) | 22 | | 10 | Effect of Mach Number on Longitudinal Coefficients | | | | $(\beta = 0, \alpha = 17^{\circ}, \text{ Left Forward Seat, Aft Transition})$ | 23 | | 11 | Effect of Mach Number on Lateral-Directional Coefficients | • | | | $(\beta = 0, \alpha = 17^{\circ}, \text{ Left Forward Seat, Aft Transition})$. | 24 | | 12 | Effect of Forward and Aft Seat Location on Longitudinal | | | | Coefficients (M = 0.9, β = 0, α = 17°, Most Aft | | | | Transition | 25 | | 13 | Effect of Forward and Aft Seat Location on Lateral- | | | | Directional Coefficients (M = 0.9, β = 0, α = 17°, | | | | Most Aft Transition) | 27 | | 14 | Effect of Forward and Aft Seat Transition on Longitudinal | -, | | | Coefficients (M = 0.9, β = 0, α = 17°, Left Forward Seat. | 28 | | 15 | Effect of Forward and Aft Seat Transition on Lateral- | 20 | | 10 | Directional Coefficients (M = 0.9 , $\beta = 0$, $\alpha = 17^{\circ}$, Left | | | | Forward Seat) | 29 | | 16 | Effect of Single- and Dual-Seat Ejection on Longitudinal | 23 | | 20 | Coefficients (M = 1.3, β = 0, α = 17°, Left Forward | | | | Seat Location, Aft Transition) | 30 | | 17 | Effect of Single- and Dual-Seat Ejection on Lateral- | 30 | | • ' | Directional Coefficients (M = 1.3, β = 0, α = 17°, Left | | | | Forward Seat Location, Aft Transition) | 32 | | 18 | Aero Equations for ACES-B1 Math Model and Typical | 34 | | 40 | Forebody Aero Data | 34 | | | | ~~ | | Figure | | Page | |--------|---|------| | 19 | Effect of Forebody Aero Data on Crew Acceleration | 36 | | | (400 KEAS at Sea Level, Left Forward Seat) | 36 | | 20 | Effect of Forebody Aero on Component Accelerations and | | | | Angular Rates (400 KEAS at Sea Level, Left Forward Seat). | 37 | | 21 | Effect of Forebody Aero Data on Crew Acceleration (500 | | | | KEAS at Sea Level, Left Forward Seat) | 38 | | 22 | Effect of Forebody Aero on Component Acceleration and | | | | Angular Rates (500 KEAS at Sea Level, Left Forward Seat). | 39 | | 23 | Effect of Forebody Aero Data on Crew Acceleration (600 | | | | KEAS at Sea Level, Left Forward Seat) | 40 | | 24 | Effect of Forebody Aero on Component Accelerations and | | | | Angular Rates (600 KEAS at Sea Level, Left Forward Seat). | 41 | | 25 | Effect of Forebody Aero Data on Crew Acceleration (600 | _ | | | KEAS at 35,000 ft, Left Forward Seat) | 42 | | 26 | Effect of Forebody Aero on Component Accelerations and | | | | Angular Rates (600 KEAS at 35,000 ft, Left Forward Seat). | 43 | | 27 | Comparison of Math Model and Sled Test Data | | | | | | | 28 | Forward Crew Location Run Index | | | 29 | Aft Crew Location Run Index | | | 30 | Sign Convention for Aerodynamic Coefficients and Angles | 50 | ### LIST OF SYMBOLS Axial force coefficient = F_{χ}/Qs , through SRP and normal to line-of- C_{X} seat rollers Side force coefficient = F_v/Qs , through SRP and normal to seat plane C_{Y} of symmetry Normal force coefficient = F_7/Qs , through SPP and parallel to line-C. of-seat rollers Pitching moment coefficient = $M_m/Qs1$, moment reference center about C_{m} SRP Yawing moment coefficient = M_n/Qsl, moment reference center about Rolling moment coefficient = $M_{2}/Qs1$, moment reference center about C Acceleration (G) normal to line-of-seat rollers $G_{\mathbf{X}}$ $G_{\mathbf{Y}}$ Acceleration (G) normal to seat plane of symmetry Acceleration (G) parallel to line-of-seat rollers G_{7} Roll rate about axis parallel to X-axis and passing through the seat/man center of gravity Yaw rate about axis parallel to Z-axis and massing through the seat/man center of gravity q Pitch rate about axis parallel to Y-axis and passing through the seat/man center of gravity SD Separation distance between seat and forebody measured from the bottom roller location at t = 0 and normal to the forebody FRL TD Transition distance between seat and forebody measured from the 17-degree rail ejection line and parallel to the forebody FRL Pressure coefficient, local pressure minus free-stream static pressure divided by free-stream dynamic pressure | α Seat | angle | of | attack | |--------|-------|----|--------| |--------|-------|----|--------| M Mach number SRP Seat reference point DRI Dynamic Response Index √ Acceleration radical KEAS Knots equivalent airspeed 6-DOF Six degrees of freedom Q Free-stream dynamic pressure s Seat reference area 1 Seat reference length #### SECTION I #### INTRODUCTION In the past, it has been customary to calculate the ejection seat performance using seat-alone aerodynamic data with rocket on and rocket off. The need to include the aerodynamic effect of seat/aircraft proximity was not recognized. The initial math model used to calculate the ejection seat performance for the B-1 bomber, aircraft 4 (A/C-4), did not include the aerodynamic influence of the aircraft forebody on the seat and did not match the sled test data accurately enough at high speed. After revising the math model to include aerodynamic proximity data, good agreement between math model and sled test was achieved. The wind tunnel data to define the aerodynamic data due to seat/forebody proximity was obtained in the Rockwell Trisonic Wind Tunnel at subsonic and supersonic speeds. The test was conducted under Air Force contract for the B-l bomber program. Direction was supplied by the Strategic Systems Program Office (SPO) for the B-l, Wright-Patterson Air Force Base, Ohio. The purpose of this test was to provide data to improve the accuracy of the math model at the earliest time. To this end, the largest proximity effects were formulated in the simplest form. One objective of this report is to conduct a more detailed analysis of the test data than was necessary to support math modeling for the B-l program. The crew escape system for the B-1 underwent a series of important changes. Originally, the intent was to use a crew escape module; A/C-1, -2, and -3 were built and flown with one. Subsequently, the decision was made to use ejection seats; A/C-4 was built and flown with one. Despite the considerable difference in geometry between a crew module and an ejection seat, similar high-speed aerodynamic effects were experienced. In both instances, the ejected components experienced incremental lift forces during aircraft separation that increased the total force acting on the crewman at high speed. Further, in both instances, the ejected components, if unstable, experienced large attitude excursions between aircraft separation and drogue line stretch. In the case of the crew module, design changes were eventually adopted to provide a stable system, and the attitude excursions are very mild. The ejection seat system underwent an important design change because of high-speed aerodynamic characteristics. The original design goal was to eject the crew in pairs to minimize the escape time. It was envisioned that the seat pairs could be dispersed laterally to prevent interaction. However, test and analysis demonstrated that the lateral divergence capability of the ejection seat was not adequate to control the high-speed aerodynamic effects. The final design adopted for A/C-4 consists of ejecting the crewmen in sequence. In retrospect, the high-speed aerodynamic effects had a greater impact on the B-l escape system design than was anticipated. Understanding the aerodynamic forces at high speed proved to be a limiting design factor. The high-speed aerodynamic forces have a significant impact on the performance of seat subsystems such as lateral divergence and pitch control. Requirements for the design of such subsystems cannot be properly addressed without understanding the aerodynamic influence of the aircraft flow field on the seat. Finally, the implications of the problem can best be expressed in terms of an injury-potential analysis. #### SECTION II #### WIND TUNNEL INVESTIGATION Rockwell acquired wind tunnel data for the ACES-B1 ejection seat in the presence of the B-1 forebody to help formulate a trajectory math model. Two separate series of tests were conducted. The first test series occurred during June 1976 and provided data for a dual, side-by-side ejection. The second test series occurred during February 1977 and provided data for single seats ejected in sequence. Wind tunnel installation pictures for these two tests are presented in Figures 1 and
2. The purpose of these tests was to define the aerodynamic effects of seat/aircraft proximity only. The proximity increments obtained from these tests were used in conjunction with seat alone data obtained in the AEDC 16-foot wind tunnel. Data for an 0.5-scale model of the ACES-Bl ejection seat with the capability to simulate rocket plumes were obtained during November 1976. #### TEST DESCRIPTION The tests described in this report were conducted in the Rockwell Trisonic Wind Tunnel. Detailed information is contained in References 1, 2, and 3. This wind tunnel is an intermittent blowdown facility capable of operation at Mach numbers from 0.1 to 3.5. The test section is 7 feet wide by 7 feet high, and the basic model support system is a circular sector sting support mounted beneath the tunnel floor. The sector is used to rotate the model about a center of rotation which is fixed in space. The model installation and test conditions are shown in Figure 3. The model consisted of a 0.10-scale representation of the ACES-B1 ejection seat containing a 95th precentile man, plus a B-1 Fuselage Forebody truncated at fuselage station (FS) 500 (full-scale). The interior volume, openings, and bulkheads of the crew compartment were simulated. Whenever the seat was positioned to simulate the aft crew member, dummy crewmembers were installed in the preejection forward position. Whenever side-by-side seating was simulated, the right crewmember was supported by a separate sting that was parallel to the left sting. The model was installed in the inverted position so that existing hardware could be used to position the forebody in a way to avoid interference with reflected shock waves at low supersonic Mach numbers. Yaw data were obtained by rolling the entire model assembly 90 degrees and then pitching the support sector. SD = 2.83 ft SD = 4.88 ft SD = 9.375 ft Free air, seat alone Figure 1. 0.1-Scale Ejection Seats/B-1 Forebody Model in Wind Tunnel (Single Seat) SD = 4.88 ft Free air, seats alone Figure 2. 0.1-Scale Ejection Seats/B-1 Forebody Model in Wind Tunnel (Dual Seats) Test Conditions: Mach number, 0.60 to 1.50 Seat angle of attack, 12° to 27° Seat angle of sideslip, -5° to +10° Reynolds number per foot | <u>. M</u> | $\frac{\text{RN} \times 10^{-6}}{\text{FT}}$ | |------------|--| | 0.60 | 6.1 | | 0.90 | 6.2 | | 1.30 | 7.2 | | 1.50 | 9.1 | # Tunnel ceiling Figure 3. Wind Tunnel Model Installation/And Test Conditions Six-component force data were measured on the left ejection seat assembly. The seat was supported by a sting and could be adjusted to various fore-and-aft and vertical positions relative to the fuselage. The actual seat/forebody conditions tested are listed in Figures 28 and 29 in the Appendix. Free air data for the seat were obtained by removing the fuselage. Ejection seat aerodynamic data were recorded in a body axis system consisting of three mutually perpendicular axes (X, Y, Z) that intersect at the seat reference point (SRP). The Z-axis is in the seat plane of symmetry and parallel to the rail centerline as shown in Figure 30. The SRP is the intersection of the compressed seat back tangent plane, compressed seat cushion tangent plane, and plane of symmetry of the seat. The test data were reduced to coefficient form using a reference area that is equal to the projected frontal area of the seat/man combination and a reference length equal to the diameter of a circle whose area is the reference area. The ejection seat proximity to the fuselage was determined by the separation and transition distances. These distances position the seat bottom roller relative to the forebody. Zero separation distance is the position of the bottom roller prior to ejection initiation with neutral seat adjustment. The separation distance is measured normal to the fuselage reference line. The transition distance is measured forward or aft of the seat 17-degree rail ejection line and parallel to the fuselage reference line. These distances are shown in Figures 28 and 29. #### ANALYSIS OF DATA The aerodynamic forces and moments acting on the ACES-Bl ejection seat in the presence of the B-1 forebody have been analyzed. The influence of the following parameters has been established: separation distance, aircraft pitch and yaw, Mach number, seat location and transition, and dual seat ejection. The plotted data presented are only a small portion of the data analyzed. However, the data presented are judged to be typical of all the data presented in the Appendix. # Effect of Separation Distance The data are presented in the form of seat aerodynamic coefficients versus separation distance for a given parameter. Seat/forebody interaction is judged to be negligible at a separation distance of 19 feet at all speeds. The data shown at 19 feet are seat-alone data. The general arrangement of the seats and the forebody is shown in Figure 4. The separation distance is also shown to permit the reader to visualize the seat/forebody proximity at different separation distances. Figure 4. General Arrangement of ACES-B1 Ejection Seats and B-1 Forebody At any given separation distance, the seat aerodynamic data are influenced by many effects. However, there appears to be several important trends that are present in all of the longitudinal data. The typical variation of the longitudinal seat data with separation distance is illustrated in Figure 6 by the α = 17-degree case. The force normal to the seat back (C_{χ}) increases with separation distance and approximates the free air value as soon as the seat is clear of the fuselage. The force parallel to the seat back (C_{χ}) shows a very large upward increase due to the forebody. This forebody influence is significant for separation distances between zero and 6 feet; beyond 6 feet, the forebody influence gradually decreases and appears to be negligible at 19 feet. The pitching moment (C_{χ}) shows a very large noseup increase due to the forebody that reaches a peak near the end of the rail. The large influence of the forebody on C_{χ} and C_{χ} is very significant. The effect of forebody proximity on C_{χ} can result in a much larger dynamic response index (DRI) value during high-speed ejection, and the effect of proximity on C_{χ} can reduce the operational envelope of any seat longitudinal stability control system. The influence of the forebody on C_Z is believed to be primarily due to the windshield. The windshield produces an abrupt change in the flow that creates a large negative pressure field over the region of the escape hatches. This can be seen in Figure 5, which presents pressure data along the forebody centerline for the upper and lower surfaces. The lateral-directional data do not appear to have any large obvious trends like the longitudinal data. Rather, the lateral-directional trends appear to be controlled by the secondary parameters which will be discussed separately. # Aircraft Pitch and Yaw The sensitivity of the forces and moments acting on the ejecting seat/man to the angle of attack and angle of sideslip was investigated. The data are presented for seat angle of attack, but the forebody flow field changes with airplane angle of attack. There is a fixed 17-degree difference between airplane and seat angle of attack. The seat aerodynamic axes and the ejection rails are parallel and are tilted backward 17 degrees relative to the aircraft reference system. The seat angle of attack is 17 degrees larger than the forebody angle of attack. Typical seat longitudinal data are presented in Figure 6 for seat angles of attack of 12, 17, and 22 degrees. These seat angles correspond to forebody angle of attack of -5, 0, and +5 degrees. The incremental contribution due to the forebody is approximately the same over the angle of attack range investigated. The shift in the data in Figure 6 is due mainly to the contribution of the seat-alone data. Figure 5. Forebody Pressures Along Centerline, $\alpha_{A/C} = 0$, $\beta_{A/C} = 0$ Figure 6. Effect of Angle of Attack on Longitudinal Coefficients (M = 0.9, Left Forward Seat, β = 0, Aft Transition) Typical lateral-directional data for the left forward seat at zero sideslip is presented in Figure 7 for angles of attack of 12, 17, and 22 degrees. The incremental contribution due to the forebody is dependent on the angle of attack. The largest influence occurs just after seat/rail separation. Typical seat longitudinal data are shown in Figure 8 for angles of sideslip of zero and 5 degrees. It can be seen that the sideslip angle has a negligible influence on the data. Typical lateral-directional data for the left forward seat at a 17-degree angle of attack are presented in Figure 9 for angles of sideslip of zero and 5 degrees. The incremental contribution due to the forebody is dependent on the angle of sideslip. The forebody effect on the seat data is larger with sideslip than without sideslip. ### Effect of Mach Number Longitudinal data for the left forward seat are presented in Figure 10 for Mach 0.6, 0.9, and 1.3. The influence of the forebody shows a common trend versus separation distance for all Mach numbers. In particular, the large influence on C_Z and C_M appears to be present at subsonic and supersonic speeds. Lateral-directional data for the left forward seat are shown in Figure 11 for mach 0.6, 0.9, and 1.3. There appears to be a definite effect of Mach number that varies with separation distance. The greatest effect occurs just after seat/rail separation. # Seat Location and Transition There are four seat locations, one for each crewman. (See Figure 4.) The distance between the forward and aft seat locations is about 8 feet. The influence of the forebody flow field at the forward and aft crew stations was investigated. Typical longitudinal data for the forward and aft seats on the left side of the forebody are shown in Figure 12. The
incremental contribution due to the forebody is approximately the same for both locations. The largest difference occurs for the pitching moment prior to seat/rail separation. The similarity of the data for the two locations appears to be due to the similarity in the forebody pressures over all hatches. (See Figure 5.) Figure 7. Effect of Angle of Attack on the Lateral-Directional Coefficients (M = 0.9, β = 0, Left Forward Seat, Aft Transition) Figure 8. Effect of Angle of Sideslip on Longitudinal Coefficients (M = 0.9, Left Forward Seat, α = 17°, Aft Transition) Figure 9. Effect of Angle of Sideslip on Lateral-Directional Coefficients (M = 0.9, Left Forward Seat, α = 1°°, Aft Transition) Figure 10. Effect of Mach Number on Longitudinal Coefficients ($\beta=0$, $\alpha=1^{-6}$, Left Forward Seat, Aft Transition) Figure 11. Effect of Mach Number on Lateral-Directional Coefficients (β = 0, α = 17°, Left Forward Seat, Aft Transition) Figure 12. Effect of Forward and Aft Seat Location on Longitudinal Coefficients (M = 0.9, β = 0, α = 17°, Most Aft Transition) Typical lateral-directional data for the forward and aft seats on the left side of the forebody are presented in Figure 13. It can be seen that the contribution due to the forebody varies with seat location. The differences are judged to be due to hatch geometry. Consider the way in which the side force (C_Y) varies with separation distance. The aft seat data show very little influence due to the forebody. The aft seat ejects through an overhead hatch, and the aerodynamic environment is similar on both sides of the seat. However, the forward seat data are influenced by the forebody. The forward seat ejects through a hatch that is open overhead and along one side, and the aerodynamic environment is not the same on both sides of the seat. The differences in hatch geometry are judged to be the reason for the strong influence of seat location on the lateral-directional data. After leaving the rails, the seat will transition forward or aft by some distance which depends on the flight condition. At low speed, the rockets move the seat forward of the 17-degree rail ejection line, and at high speed, the aerodynamic drag moves the seat aft of this line. This forward and aft transition places the seat in slightly different regions of the forebody flow field at any given separation distance. The influence of transition distance (TD) was determined by wind tunnel test. A spread of TD's was tested at several separation distances which are representative of actual distances for the ACES-Bl seat. The values tested are indicated in the run index in Figures 28 and 29. The effect of seat transition distance is shown in Figure 14 for the longitudinal data and in Figure 15 for the lateral-directional data. In all instances, the contribution of transition distance is small. At small separation distances where the forebody flow field is strong, the transition distances are small. Conversely, at large separation distances where the transition distances are large, the forebody flow field is weak. ### Side-By-Side Seats When two seats are ejected simultaneously, side-by-side, there are two proximity effects to be accounted for: the forebody flow field, plus the flow field of the adjacent seat. Wind tunnel data were obtained for both single and dual seat ejection. The actual cases tested are listed in Figures 28 and 29. In general, it was found that the seat/seat proximity effects are much larger at supersonic speeds than at subsonic speeds. A comparison between single and dual seat ejection for the longitudinal data is presented in Figure 16. The conditions for this comparison are left forward seat location, aft transition, M = 1.3, $\alpha = 17^{\circ}$, $\beta = 0$. The influence of the forebody is very similar in both instances. The contribution of the adjacent seat is reflected in the data obtained without the forebody (shown at SD = 19 feet in Figure 16). With the two seats, side-by-side, Figure 13. Effect of Forward and Aft Seat Location on Lateral-Directional Coefficients (M = 0.9, β = 0, α = 17°, Most Aft Transition) Figure 14. Effect of Forward and Aft Seat Transition on Longitudinal Coefficients (M = 0.9, β = 0, α = 17°, Left Forward Seat) Figure 15. Effect of Forward and Aft Seat Transition on Lateral-Directional Coefficients (M = 0.9, β = 0, α = 17°, Left Forward Seat) Figure 16. Effect of Single- and Dual-Seat Ejection on Longitudinal Coefficients (M = 1.3, β = 0, α = 17°, Left Forward Seat Location, Aft Transition) and no forebody, the changes in the longitudinal data are judged to be secondary. The forebody has a much larger effect on the seat longitudinal data than the adjacent seat. A comparison between single and dual seat ejection for the lateral-directional data is presented in Figure 17. The conditions for this comparison are the same as those used for the longitudinal case. The contribution of the adjacent seat is very powerful. For example, the influence due to the adjacent seat, shown at SD = 19 feet, is equivalent to a yaw angle of approximately 8 degrees for the seat alone. This is a very significant disturbance at high speed. Very large and dangerous seat transients could result between seat/rail separation and drogue line stretch. Also, lateral dispersal is a necessary feature of side-by-side ejection, and large seat transients can be expected to complicate the task of achieving safe lateral dispersal. Also, it can be seen in Figure 17 that the forebody effect on the lateral-directional data is not the same for single and dual seats. Thus, data obtained for a single seat in the presence of a forebody could not be applied to a dual seat combination. Figure 17. Effect of Single- and Dual-Seat Ejection on Lateral-Directional Coefficients (M = 1.3, β = 0, α = 17°, Left Forward Seat Location, Aft Transition) #### SECTION III #### MATH MODEL ANALYSIS Rockwell developed a six-degrees-of-freedom (6-DOF) math model to analyze the performance of the ACES-Bl seat system when ejected from the B-l forebody. The math model output has been compared with sled test data, and good correlation between calculated and test results have been demonstrated up to 600 KEAS. The math model was developed specifically to analyze the ACES-Bl seat performance when ejected from the B-l aircraft. However, the conclusions that can be drawn using this model are judged to have general significance for high-speed ejection seats. # 6-DOF MATH MODEL The 6-DOF math model was developed to simulate the seat performance from handle pull to final recovery. The performance of the seat subsystems and the sequence of events times were gradually refined based on sled test results. Ejection tests were conducted at zero, 150, 240, 250, 325, 450, 550, and 600 KEAS. Correlations between math model and test results for 150, 240, 250, 325, and 550 KEAS are documented in Reference 4, and typical comparisons are presented in Figure 27. One feature of the math model that is of particular importance to this study is the buildup of the seat aerodynamic data shown in Figure 18. The static aero data are broken down into three separate increments; i.e., seat alone power off, rocket plumes increment, and a forebody proximity increment. This buildup of the total aerodynamic effect permits a direct evaluation of the forebody increment. Computer calculations can be made with and without the forebody aero data increment. The forebody aero increment is formulated as a function of the separation distance (SD) between the seat and the forebody. The forebody increment is zero for any value of SD greater than 19 feet. A typical set of data is shown in Figure 18 for one condition (M = 0.9, left forward seat). Similar data are contained in the model for the test Mach numbers in Figures 28 and 29 and for each seat location. The program interpolates or extrapolates for other Mach numbers. The forebody data are developed for α = 17° and β = 0°. It is assumed that the changes to the forebody influence due to α and β can be neglected. Also, it is assumed that the effects of transition distance can be ignored. The math model contains subroutines to calculate a multidirectional acceleration limit radical (\mathcal{J}) and the DRI. These terms and their requirements are defined in Military Specification MIL-S-9479B(USAF), "Seat System, Upward Ejection, Aircraft, General Specification For." The DRI is a value Figure 18. Aero Equations for ACES-Bl Math Model and Typical Forebody Aero Data that is calculated from the vertical acceleration measured on the seat to estimate the probability of injury within the lower spine of the seat occupant (Reference 5). The multidirectional acceleration limit radical is calculated to determine the acceptability of escape sequence acceleration vectors that contain significant components acting in a plane perpendicular to the spinal column. The acceleration radical acts to reduce the allowable DRI for applied accelerations normal to the spin. The limit value of DRI is 18 unless the resultant acceleration vector is more than 5 conical degrees off the spinal z axis and aft of the plane of the seat back, in which case the limit DRI is 16. Limit values for accelerations in the spinal x and y axis depend on a number of things; however, approximate values for the ACES-Bl system would would be 35 in the x-axis and 15 in the y-axis. The acceleration radical is limited by the following equation: $$\sqrt{\left(\frac{DRI}{(DRI)_L}\right)^2 + \left(\frac{Gy}{G_{x_L}}\right)^2 + \left(\frac{Gy}{G_{y_L}}\right)^2} \le 1.0$$ ### EFFECT OF FOREBODY FLOW FIELD Trajectories were computed with and without the forebody aero data for the left forward seat location (pilot) at four flight conditions. The flight conditions selected were 400, 500, and 600 KEAS at sea level and 600 KEAS
at 35,000 feet. The two 600 KEAS cases are intended to show the effect of Mach number not altitude; 600 KEAS at sea level is M = 0.91, and 600 KEAS at 35,000 feet is M = 1.87. All calculations are for a fifth-percentile crewman and an ejected weight of 354 pounds. The seat reference area for a fifth-percentile crewman in the ACES-Bl seat is 6.48 square feet. The reference length is 2.87 feet. The acceleration radical, DRI, component accelerations, and angular rates for each flight condition are presented in Figures 19 through 26 with and without the forebody aero increment. The component accelerations are in the seat axis system, and the angular rates are about the seat/man center of gravity. The data are plotted to a separation distance of 19 feet. This distance is the assumed limit of the forebody flow field and is just prior to drogue line stretch. It can be seen that the influence of the forebody is small at 400 KEAS, increases with speed, and has become significant at 600 KEAS. The influence of Mach number is worth noting. The high-speed subsonic data (Figure 24) and the high-speed supersonic data (Figure 26) illustrate the effect of Mach number on the component accelerations and angular rates. The effect of Mach number is important with and without the influence of the forebody. The upward force on the seat due to the forebody aero data may cause a serious increase in the DRI at high speed. For the 600 KEAS at sea-level Figure 19. Effect of Forebody Aero Data on Crew Acceleration (400 KEAS at Sea Level, Left Forward Seat) Figure 20. Effect of Forebody Aero on Component Accelerations and Angular Rates (400 KEAS at Sea Level, Left Forward Seat) Figure 21. Effect of Forebody Aero Data on Crew Acceleration (500 KEAS at Sea Level, Left Forward Seat) Figure 22. Effect of Forebody Aero on Component Acceleration and Angular Rates (500 KEAS at Sea Level, Left Forward Seat) Figure 23. Effect of Forebody Aero Data on Crew Acceleration (600 KEAS at Sea Level, Left Forward Seat, M = 0.91) Figure 24. Effect of Forebody Aero on Component Accelerations and Angular Rates (600 KEAS at Sea Level, Left Forward Seat, M = 0.91) # With forebody aero Without forebody aero Figure 25. Effect of Forebody Aero Data on Crew Acceleration (600 KEAS at 35,000 ft, Left Forward Seat, 11 = 1.87) Figure 26. Effect of Forebody Aero on Component Accelerations and Angular Rates (600 KEAS at 35,000 ft, Left Forward Seat, M = 1.87) ## Conditions: - Left forward seat - ° 4,000-feet altitude - o Holloman test track Sled test ---- Math model Figure 27. Comparison of Math Model and Sled Test Data case, the force coefficient (C_Z) due to the forebody averages -0.2 during the first 6 feet of separation distance. This can be seen in Figure 18. A force coefficient of C_Z = -0.2 represents an upward force increment of 1,581 pounds or an acceleration increment of 4.47 g for the fifth-percentile man. Obviously, the forebody influence on the seat forces cannot be ignored at high speed. Another effect worth noting is the influence of the forebody on the seat yaw rate for the 600 KEAS at sea-level case. The basic seat is directionally unstable prior to drogue line stretch, and any yaw disturbance at ejection will cause a rapid increase in yaw rate and angle of sideslip. The data in Figure 9 show that the forebody can induce a yaw disturbance during ejection, and the consequence of the forebody yaw disturbance can be observed in Figure 24. The unstable seat yaws rapidly after seat/rail separation and generates a large unwanted side acceleration (G_Y). Ejecting directionally unstable seats at high speed is a tricky business, at best. Ejecting them through a forebody flow field can be expected to worsen the situation. Figures 19 through 26 show that the forebody flow field can have a significant influence on the seat aerodynamic forces and moments. During high-speed ejection, it would not have been possible to accurately simulate the ACES-Bl seat performance without including the influence of the forebody flow field. #### HUMAN ENGINEERING/BIOMEDICAL ANALYSIS The influence of the forebody flow field upon the seat occupant was investigated. Spinal loads and biomechanical reactions during ejection were analyzed using trajectory data with and without the forebody influence. The results are judged to be useful for current and future seat designs. The incremental effect of the forebody on the DRI and acceleration radical is to increase the headward force along the spinal axis at all speeds. This can be seen in Figures 19, 21, 23, and 25. The consequence of the increased spinal compression induced by the forebody is to reduce the maximum speed at which specification requirements for the DRI and multidirectional radical can be met. Another important influence of the forebody at high speed is to induce large excursions in seat attitude. For example, at 600 KEAS at sea level, the forebody induces a large yaw rate, resulting in a large side acceleration. Gy reached a value of 30 with the forebody aero but was only 7 without the forebody aero. These values compare with a limit value of approximately 15. At supersonic speeds, the seat reactions are different but still large. For example, at 600 KEAS at 35,000 feet, the forebody induces a large pitch rate. As the seat leaves the rails (Figure 26), it pitches backward until a large portion of the drag force is in the headward direction. This increases the acceleration in the spinal axis and results in a DRI value that is in excess of the limit value of 18. Without the forebody aero, the DRI did not exceed 18 (Figure 25). These results show that the forebody induces incremental spinal forces that are important and that change with flight condition. Large angle-of-attack or angle-of-sideslip transients can intensify the biomechanical problems. The response of the torso, head, arms, and legs to the rapid alignment of the seat by the drogue chute are dependent on seat attitude at line stretch. Also, at high dynamic pressures, the head, neck, arms, legs, and hands are heavily loaded by windblast forces. Providing for support, flail restraint, and shielding of these appendages is more difficult when large off-axis windblast angles exist. The results of this study demonstrate that the B-1 forebody has a significant influence on the occupant of the ACES-B1 seat. Some of the results are felt to apply in general. It seems reasonable to assume that every seat installation will have some degree of seat/forebody interaction. Further, it seems only prudent to include separation aero data in any high-speed simulation. Otherwise, the simulation may conceal the real injury possibilities that the crewman is exposed to. This study revealed that the B-1 forebody induces a large upward force on the seat at high speed. This effect was judged to be related to the pressure field generated by the windshield. It is logical to assume that any present or future design that ejects behind a windshield will experience a similar effect. This study also revealed that the B-1 forebody induces large attitude excursions after seat/rail separation in both nitch and yaw. The yaw effect was judged to be due to the unsymmetrical, offcenterline arrangement of the B-1. For symmetrical centerline configurations, the forebody influence on yaw excursions would logically be less than for the B-1, but pitch excursions similar to the B-1 case would still be possible. Even symmetrical configurations may experience large yaw excursions due to the combined effect of seat instability plus initial sideslip at ejection. Future seat designs should be stable in order to keep the high-speed biomedical problems within reasonable bounds. #### SECTION IV ## CONCLUSIONS - 1. It would not have been possible to accurately simulate the ACES-B1 seat acceleration, angular rates, and trajectory during high-speed ejection without including the influence of the B-1 forebody flow field. - 2. The B-1 forebody flow field interacts with the ACES-B1 seat from its initial position through the first 19 feet of seat travel. The primary parameters that influence the incremental contribution of the forebody are separation distance, seat location, and Mach number. The influence of aircraft angle of attack and sideslip at ejection and seat transition after seat/rail separation were found to be negligible up to $\beta = 5^{\circ}$ and $\alpha = \pm 5^{\circ}$. - 3. Side-by-side seats have a significant aerodynamic interaction at high speed. The influence of an adjacent seat is most powerful on the lateral-directional data at supersonic speed. At M = 1.3, the influence of the adjacent seat is equivalent to a yaw angle of approximately 8 degrees. - 4. The B-1 forebody induces an upward force on the seat that is present at all speeds. This effect is judged to be caused by the pressure field generated by the windshield. Trajectory calculations reveal that this headward force increment causes a significant increase in the DRI and the multidirection acceleration radical at high speed. Present and future designs that eject behind a windshield may logically experience a similar effect. - 5. Trajectory calculations exhibit large excursions in seat attitude caused by the forebody flow field. The excursions are large enough to pose serious biomechanical problems at high speed. It is the combined effect of the forebody disturbance plus seat instability that produces the large excursions. The magnitude of ejection transients could be reduced if future high-speed seats were designed to be stable. APPENDIX ACES-B-1/B-1 FOREBODY WIND TUNNEL DATA | | | Pitch runs
Mach No. | | | | ew runs | | Seat | |---|--|--|--|--
---|---|---|-------------------------| | SD - ft | TD - ft | 0.6 | 0.9 | 1.3 | 0.6 | 0.9 | 1.3 | arrangement | | 1.50
3.16
5.50
10.00
10.00
10.00
13.67
13.67 | 0
0
0
-1.375
0
2.50
-2.497
1.378
4.030 | 1
4
10
16
22
28
34
40
46
52 | 2
5
11
17
23
29
35
41
47 | 3
6
12
18
24
30
36
42
48
54 | 7
13
19
25
31
37
43
49 | 8
14
20
26
32
38
44
50
56 | 9
15
21
27
33
39
45
51 | Single -
left side | | 1.50
3.17
5.50
® | 0
0
0 | 58
61
67
73 | 59
62
68
74 | 60
63
6 9
75 | 64
70
76 | 65
71
77 | 66
72
78 | Dual - side-
by-side | NOTE: TD positive aft of 17° rail ejection line Figure 28. Forward Crew Location Run Index | | | Pitch runs Mach No. 0.6 0.9 1.5 | | | М | aw runs | | Seat
arrangement | |--|---|--|--|--|--|---|---|-------------------------| | SD - ft | TD - ft | 0.6 | 0.9 | 1.5 | 0.6 | 0.9 | 1.5 | | | 1.75
2.83
4.88
9.375
9.375
13.04
13.04 | 0
0
0
-1.376
1.124
-2.497
0
4.17 | 79
82
88
94
100
106
112
118 | 80
83
89
95
101
107
113
119 | 81
84
90
96
102
108
114
120 | 85
91
97
103
109
115
121 | 86
92
98
104
110
116
122
128 | 87
93
99
105
111
117
123
129 | Single -
left side | | 1.75
2.83
4.88
• | 0
0
0
- | 130
133
139
145 | 131
134
140
146 | 132
135
141
147 | 136
142
148 | 137
143
149 | 138
144
150 | Dual - side-
by-side | NOTE: TD positive aft of 17° rail ejection line Figure 29. Aft Crew Location Run Index # NOTE: The Z-axis for the aerodynamic data is parallel to the rail ${\tt Q}$. The plane of the compressed seat back cushion is 4.5° forward of the aerodynamic axis. Figure 30. Sign Convention for Aerodynamic Coefficients and Angles | Run | М | α | β | c_{χ} | c_{z} | C _Y | C _m | $C_{\mathbf{n}}$ | C ₂ | |-----|--|---|---|--|--|--|---|--|--| | 1 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.19
13.96
15.78
17.53
19.56
21.30
23.24
25.16
26.97 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.156
-0.139
-0.135
-0.134
-0.125
-0.118
-0.115
-0.105
-0.095 | 1146
1163
1282
1373
1335
1401
1415
1408 | 0598
0548
0612
0668
0649
0626
0594
0520
0429 | .1169
.1094
.1064
.1022
.0972
.0926
.0893
.0856 | 0214
0195
0197
0204
0195
0188
0179
0169
0152 | 0270
0288
0288
0290
0304
0263
0225
0167 | | 2 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 13.12
14.92
16.84
18.76
20.67
22.59
24.51
26.37 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.219 -0.214 -0.215 -0.208 -0.202 -0.198 -0.183 -0.168 | 1202
1220
1173
1252
1313
1342
1356
1368 | 0674
0803
1026
0982
0909
0876
0666
0450 | .1593
.1554
.1515
.1479
.1447
.1416
.1350
.1262 | 0230
0238
0270
0256
0247
0231
0212
0167 | 0317
0361
0450
0411
0380
0340
0295
0171 | | 3 | 1.28
1.28
1.28
1.28
1.28
1.28
1.28
1.28 | 12.14
13.95
15.74
17.47
19.19
20.89
22.80
24.69
26.49 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.244
-0.243
-0.234
-0.227
-0.215
-0.205
-0.193
-0.174
-0.154 | 0796
0813
0851
0898
0912
0948
0952
0929
0907 | 0361
0372
0343
0312
0344
0377
0383
0410
0323 | .1784
.1772
.1722
.1677
.1611
.1560
.1479
.1354
.1217 | - 0216
- 0211
- 0197
- 0190
- 0187
- 0190
- 0176
- 0162
- 0122 | 0161
0170
0151
0147
0139
0132
0121
0119
0073 | | 1 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.15
13.98
15.70
17.44
19.25
1.17
23.08
24.98
26.82 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.507
-0.507
-0.499
-0.501
-0.494
-0.487
-0.478
-0.465
-0.451 | 1438
1549
1624
1737
1819
1821
1792
1746
1695 | 0353
0380
0547
0606
0692
0665
0697
0639
0576 | .1628
.1708
.1712
.1745
.1776
.1766
.1722
.1660
.1579 | 0054
0054
0080
0078
0110
0134
0172
0178
0176 | .0281
.0308
.0247
.0224
.0179
.0167
.0081
.0061 | | Run | М | o | β | c_{χ} | $C_{\overline{2}}$ | c_{Y} | $^{\rm C}_{\rm m}$ | C
n | C ₂ | |-----|--|---|---|--|---|--|--|--|---| | 5 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 12.05
13.90
15.76
17.47
19.27
21.07
22.97
24.85 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.602
-0.601
-0.603
-0.599
-0.608
-0.607
-0.603 | 0199
0397
0558
0767
0954
1020
1094
1165 | 0507
0566
0638
0587
0484
0556
0481
0359 | .1630
.1723
.1820
.1919
.2027
.2080
.2147
.2194 | 0141
0126
0122
0095
0097
0103
0098
0079 | .0090
.0032
0049
0000
0010
0056
0055 | | 6 | 1.28
1.28
1.28
1.28
1.28
1.28
1.28
1.28 | 12.08
13.90
15.76
17.47
19.35
21.23
23.02
24.89
26.69 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.597
-0.720
-0.729
-0.736
-0.734
-0.726
-0.716
-0.703
-0.680
-0.656 | .0008
0092
0260
0438
0569
0711
0838
0863
0874 | 0311
0179
0536
0604
0309
0372
0388
0383
0324 | .2249
.2164
.2291
.2431
.2547
.2658
.2733
.2791
.2784
.2745 | 0079 00850115012300840079008800850095 | 0072
.0163
0050
0134
0038
0034
0089
0089
0093
0080 | | 7 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -3.89
-2.01
-0.27
1.47
3.39
5.32
7.26
9.16 | -0.511
-0.512
-0.505
-0.498
-0.506
-0.498
-0.498
-0.489 | 1585
1585
1669
1606
1519
1422
1251
1132 | 0317
0407
0628
0928
1130
1498
1839
2237 | .1638
.1662
.1738
.1708
.1637
.1525
.1479 | 0133
0082
0086
0119
0125
0197
0246
0317 | .0050
.0212
.0207
.0137
.0020
0044
0099
0200 | | 8 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.06
-2.13
-0.22
1.68
3.57
5.48
37
9.22 | -0.621
-0.611
-0.596
-0.594
-0.600
-0.616
-0.638
-0.660 | 0920
0784
0642
0529
0661
0636
0725
0775 | 0101
0434
0755
0907
1184
1544
1896
2472 | .1984
.1898
.1864
.1814
.1882
.1892
.2003
.2159 | 0062
0105
0138
0177
0228
0287
0335
0396 | .0022
0030
0064
0077
0136
0196
0253
0382 | | Run | М | α | β | c_{χ} | c_{z} | C_{Y} | C _m | $^{\rm C}_{ m n}$ | c ₁ | |-----|--|---|---|--|--|--|---|--|---| | 9 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 |
-4.90
-3.03
-1.25
0.46
2.25
4.04
5.74
7.62
9.45 | -0.734
-0.737
-0.738
-0.735
-0.727
-0.728
-0.736
-0.732
-0.729 | 0469
0436
0434
0501
0471
0631
0705
0664
0601 | .0367
.0035
0347
0672
0988
1266
1719
2260
2595 | .2531
.2529
.2537
.2594
.2573
.2687
.2747
.2735
.2742 | .003900150095014002020255032404230467 | .0072
.0050
0008
0118
0165
0182
0277
0451
0592 | | 10 | 0.60
0.60
0.60
0.60
0.60
0.60 | 13.10
14.89
16.81
18.74
20.65
22.57
24.50
26.36 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.842
-0.834
-0.822
-0.809
-0.798
-0.778
-0.748
-0.723 | 1176
1326
1578
1681
1808
1940
2126
2254 | 0189
0122
.0077
.0197
.0111
.0038
0073
0100 | .0997
.0995
.1012
.1030
.1081
.1107
.1144
.1136 | 0066
0046
.0018
.0059
.0028
.0018
.0003 | 0034
0087
0062
.0022
.0066
.0076
.0059
.0028 | | 11 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.97
13.86
15.73
17.46
19.37
21.27
23.18
25.08
26.88 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.037
-1.028
-1.023
-1.016
-1.005
-0.994
-0.979
-0.955
-0.933 | 0920
1080
1251
1493
1688
1852
2016
2199
2381 | 1196
1073
0856
0643
0429
0309
0232
0177
0171 | .1701
.1744
.1799
.1854
.1912
.1936
.1969
.1976
.1986 | 0377
0348
0285
0218
0142
0103
0065
0036
0024 | .0052
.0065
.0082
.0009
.0044
.0065
.0082
.0068 | | 12 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 11.98
13.82
15.68
17.39
19.29
21.17
23.06
24.94
26.74 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.223
-1.219
-1.214
-1.199
-1.176
-1.144
-1.109
-1.070
-1.035 | 1306
1497
1638
1709
1818
1921
2043
2261
2372 | 1131
0953
0796
0652
0515
0380
0242
0195
0083 | .2447
.2528
.2577
.2569
.2551
.2513
.2470
.2432
.2386 | 0369
0315
0267
0226
0183
0146
0112
0098
0064 | .0111
.0121
.0087
.0037
.0005
0013
0026
0027
0048 | | Run | M | α | β | c^X | c_{z} | c_{Y} | C _m | $C_{\mathbf{n}}$ | C ₂ | |-----|--------------|----------------|--------------|--------|---------|---------|----------------|------------------|----------------| | 13 | 0.60 | 17.00 | -3.84 | -0.812 | 1673 | .0118 | .1073 | .0009 | 0236 | | | 0.60 | 17.00 | -1.97 | -0.811 | 1589 | .0181 | .1002 | 0003 | 0015 | | | 0.60 | 17.00 | -0.14 | -0.812 | 1597 | .0155 | .0990 | 0007 | .0097 | | | 0.60 | 17.00 | 1.78 | -0.832 | 1561 | 0106 | .0984 | 0115 | .0329 | | | 0.60 | 17.00 | 3.70 | -0.866 | 1529 | 0284 | .0981 | 0197 | .0572 | | | 0.60
0.60 | 17.00 | 5.64 | -0.890 | 1503 | 0702 | .1006 | 0263 | .0657 | | | 0.60 | 17.00
17.00 | 7.58 | -0.901 | 1371 | 1380 | .1018 | 0423 | .0653 | | | 0.00 | 17,00 | 9.48 | -0.889 | 1420 | 2261 | .1038 | 0614 | .0529 | | 14 | 0.00 | 17.00 | | | | | | | | | 7.4 | 0.90 | 17.00 | -4.00 | -1.015 | 1604 | .0161 | .1847 | .0006 | .0023 | | | 0.90
0.90 | 17.00 | -2.13 | -1.012 | 1485 | 0130 | .1787 | 0086 | .0021 | | | 0.90 | 17.00 | -0.38 | -1.020 | 1386 | 0716 | .1808 | 0224 | .0092 | | | 0.90 | 17.00
17.00 | 1.36 | -1.044 | 1256 | 1171 | .1773 | 0330 | .0144 | | | 0.90 | 17.00 | 3.20 | -1.060 | 1319 | 1786 | .1781 | 0480 | .0188 | | | 0.90 | 17.00 | 5.02
6.94 | -1.080 | 1292 | 2173 | .1814 | 0634 | .0263 | | | 0.90 | 17.00 | 8.85 | -1.092 | 1247 | 2390 | .1824 | 0687 | .0427 | | | 0.50 | 17.00 | 0.03 | -1.092 | 1384 | 2813 | .1875 | 0815 | .0376 | | 15 | 1.27 | 17.00 | -3.96 | -1.180 | 2038 | .0280 | .2634 | 0074 | 2045 | | | 1.27 | 17.00 | -2.13 | -1.177 | 1855 | 0166 | .2550 | 0074 | .0045 | | | 1.27 | 17.00 | -0.38 | -1.198 | 1763 | 0682 | .2577 | 0154 | .0057 | | | 1.27 | 17.00 | 1.41 | -1.220 | 1764 | 1383 | .2627 | 0239
0370 | .0056 | | | 1.27 | 17.00 | 3.39 | -1.243 | 1738 | -,2269 | .2659 | 0576 | .0051 | | | 1.27 | 17.00 | 5.36 | -1.252 | 1707 | 3019 | .2663 | 0790 | .0027 | | | 1.27 | 17.00 | 7.34 | -1.251 | 1640 | 3908 | .2668 | 0790 | 0027
0161 | | | 1.27 | 17.00 | 9.31 | -1.240 | 1584 | 4889 | .2629 | 1156 | 0389 | | | | | | | | | | | | | 16 | 0.60 | 11.94 | 0.00 | -0.884 | .0494 | 0291 | .0374 | 0157 | .0096 | | | 0.60 | 13.81 | 0.00 | -0.877 | .0215 | 0177 | .0387 | 0147 | .0111 | | | 0.60 | 15.68 | 0.00 | -0.862 | .0036 | 0103 | .0393 | 0133 | .0130 | | | 0.60 | 17.40 | 0.00 | -0.851 | 0134 | 0112 | .0408 | 0135 | .0092 | | | 0.60 | 19.20 | 0.00 | -0.836 | 0327 | 0123 | .0425 | 0114 | .0049 | | | 0.60 | 21.01 | 0.00 | -0.821 | 0527 | 0049 | .0450 | 0091 | .0039 | | | 0.60 | 22.72 | 0.00 | -0.812 | 0672 | .0022 | .0501 | 0057 | .0059 | | | 0.60 | 24.61 | 0.00 | -0.784 | 0815 | .0053 | .0508 | 0048 | .0046 | | | 0.60 | 26.45 | 0.00 | -0.751 | 0979 | .0093 | .0498 | 0040 | .0036 | | Run | M | α | β | c_{χ} | $C_{\overline{Z}}$ | C_{Y} | $^{\rm C}_{\rm m}$ | $^{\rm C}_{\rm n}$ | c _e | |-----|--------------|----------------|----------------|------------------|--------------------|--------------|--------------------|--------------------|----------------| | 17 | 0.90
0.90 | 12.86
14.85 | 0.00
0.00 | -1.156
-1.151 | .0822 | 0338
0298 | .0825 | 0149
0134 | .0035 | | | 0.90
0.90 | 16.77
18.70 | 0.00
0.00 | -1.133
-1.116 | .0341 | 0297
0120 | .0913
.0979 | 0127
0109 | .0010 | | | 0.90
0.90 | 20.61
22.54 | 0.00
0.00 | -1.102
-1.082 | 0249
0534 | 0084
0112 | .1072
.1138 | 0083
0078 | .0058 | | | 0.90
0.90 | 24.46
26.33 | 0.00
0.00 | -1.060
-1.026 | 0791
1013 | 0107
0109 | .1185
.1200 | 0074
0067 | .0036 | | | | | | | | | | | | | 18 | 1.27 | 11.92 | 0.00 | -1.320 | 0166 | 0499 | .1704 | 0174 | .0019 | | | 1.27
1.27 | 13.78
15.58 | $0.00 \\ 0.00$ | -1.308
-1.290 | 0477
0764 | 0483
0429 | .1798
.1875 | 0169
0156 | .0020 | | | 1.27 | 17.32 | 0.00 | -1.271 | 0983 | 0429 | .1921 | 0130 | .0023 | | | 1.27 | 19.05 | 0.00 | -1.246 | 1208 | 0341 | .1950 | 0126 | .0002 | | | 1.27 | 20.95 | 0.00 | -1.216 | 1446 | 0293 | .1978 | 0112 | .0001 | | | 1.27 | 22.76 | 0.00 | -1.184 | 1663 | 0246 | .1988 | 0096 | .0000 | | | 1.27
1.27 | 24.67
26.50 | $0.00 \\ 0.00$ | -1.145
-1.102 | 1929
2172 | 0240
0196 | .1979 | 0091 | .0004 | | | 1.2/ | 20.30 | 0.00 | -1.102 | 2172 | 0190 | .1952 | 0081 | .0008 | | 19 | 0.60 | 17.00 | -3.98 | -0.852 | 0202 | .0547 | .0432 | .0070 | 0^36 | | | 0.60 | 17.00 | -2.10 | -0.851 | 0175 | .0227 | .0409 | 0051 | •60. > | | | 0.60 | 17.00 | -0.37 | -0.847 | 0090 | 0151 | .0381 | 0141 | .010 | | | 0.60 | 17.00 | 1.37 | -0.849 | 0118 | 0626 | .0404 | 0247 | .01. | | | 0.60
0.60 | 17.00
17.00 | 3.10
4.92 | -0.850
-0.844 | 0122 | 0911
1144 | .0415 | 0350
0437 | .0239 | | | 0.60 | 17.00 | 6.83 | -0.844 | 0142
0259 | 1144 | .0422 | 0437
0464 | .0336 | | | 0.60 | 17.00 | 8.74 | -0.856 | 0235 | 1247 | .0535 | 0510 | .0752 | | | | 1,,,,, | 3771 | \$15 5 0 | 10200 | | .0000 | •0010 | | | 20 | 0.90 | 17.00 | -3.99 | -1.122 | .0143 | .0663 | .0981 | .0104 | .0025 | | | 0.90 | 17.00 | -2.10 | -1.125 | .0271 | .0190 | .0928 | 0026 | .0044 | | | 0.90
0.90 | 17.00
17.00 | -0.24
1.72 | -1.125 | .0371 | 0349 | .0907 | 0145 | .0029 | | | 0.90 | 17.00 | 3.65 | -1.124
-1.120 | .0312 | 0902
1403 | .0946
.0997 | 0287
0438 | .0090 | | | 0.90 | 17.00 | 5.60 | -1.126 | .0107 | 1793 | .1108 | 0601 | .0285 | | | 0.90 | 17.00 | 7.53 | -1.126 | .0080 | 2154 | .1157 | 0727 | .0455 | | | 0.90 | 17.00 | 9.44 | -1.129 | 0019 | 2612 | .1252 | 0884 | .0546 | | | | | | | | | | | | | Run | M | α | β | c_{χ} | c_{z} | c_{Y} | $C_{\mathbf{m}}$ | C _n | C _e | |-----|--------------|----------------|----------------|------------------|--------------|----------------|------------------|----------------|----------------| | 21 | 1 27 | 15 00 | - 0- | | 1011 | 0506 | 1055 | | | | 21 | 1.27
1.27 | 17.00
17.00 | -3.93
-2.08 | -1.279
-1.269 | 1041
0978 | .0706
.0123 | .1957
.1917 | .0073
0057 | 0013 | | | 1.27 | 17.00 | -0.12 | -1.209 | 0978 | 0458 | .1905 | 0153 | .0003 | | | 1.27 | 17.00 | 1.83 | -1.282 | 1007 | 1094 | .1965 | 0289 | .0060 | | | 1.27 | 17.00 | 3.79 | -1.289 | 1102 | 1851 | . 2002 | 0464 | .0040 | | | 1.27 | 17.00 | 5.76 | -1.288 | 1129 | 2539 | . 2048 | 0675 | .0067 | | | 1.27 | 17.00 | 7.72 | -1.276 | 1155 | 3346 | .2068 | 0884 | .0013 | | | 1.27 | 17.00 | 9.67 | -1.263 | 1159 | 4230 | .2087 | 1077 | 0117 | | | | | | | | | | | | | 22 | 0.60 | 11.96 | 0.00 | -0.887 | .0564 | 0342 | .0369 | 0164 | .0078 | | | 0.60 | 13.81 | 0.00 | -0.882 | .0296 | 0208 | .0376 | 0138 | .0105 | | | 0.60 | 15.60 | 0.00 | -0.870 | .0098 | 0155 | .0394 | 0138 | .0115 | | | 0.60 | 17.33 | 0.00 | -0.857 | 0065 | 0115 | .0389 | 0129 | .0093 | | | 0.60 | 19.06 | 0.00 | -0.847 | 0223 | 0122 | .0407 | 0110 | .0063 | | | 0.60 | 20.88 | 0.00 | -0.830 | 0405 | 0132 | .0420 | 0103 | .0016 | | | 0.60 | 22.81 | 0.00 | -0.814 | 0588 | 0043 | .0463 | 0068 | .0028 | | | 0.60 | 24.72 | 0.00 | -0.789 | 0710 | .0038 | .0471 | 0046 | .0042 | | | 0.60 | 26.51 | 0.00 | -0.759 | 0860 | .0098 | .0459 | 0059 | .0049 | | | | | | | | | | | | | 23 | 0.90 | 11.83 | 0.00 | -1.172 | .1079 | 0374 | .0739 | 0165 | .0044 | | | 0.90 | 13.80 | 0.00 | -1.161 | .0850 | 0343 | .0798 | 0148 | .0036 | | | 0.90 | 15.69 | 0.00 | -1.150 | .0641 | 0330 | .0826 | 0135 | .0027 | | | 0.90 | 17.63 | 0.00 | -1.132 | .0406 | 0293 | .0867 | 0131 | .0023 | | | 0.90 | 19.55 | 0.00 | -1.106 | .0079 | 0198 | .0922 | 0116 | .0032 | | | 0.90
0.90 | 21.48
23.41 | 0.00
0.00 | -1.094
-1.084 | 0201
0433 | 0089
0097 |
.0994
.1075 | 0089
0070 | .0025 | | | 0.90 | 25.32 | 0.00 | -1.055 | 0433 | 0102 | .1075 | 0070 | .0038 | | | 0.50 | 43.32 | 0.00 | -1.033 | .0002 | 0102 | .1090 | 0001 | .0023 | | 24 | 1.27 | 11.87 | 0.00 | -1.333 | 0007 | 0472 | .1694 | 0164 | .0012 | | 24 | 1.27 | 13.72 | 0.00 | -1.320 | 0341 | 0472 | .1791 | 0165 | .0012 | | | 1.27 | 15.52 | 0.00 | -1.302 | 0641 | 0411 | .1871 | 0152 | .0018 | | | 1.27 | 17.26 | 0.00 | -1.282 | 0894 | 0350 | .1930 | 0133 | .0010 | | | 1.27 | 18.99 | 0.00 | -1.260 | 1113 | 0311 | .1966 | 0119 | 0006 | | | 1.27 | 20.90 | 0.00 | -1.230 | 1353 | 0269 | .2001 | 0103 | 0018 | | | 1.27 | 22.82 | 0.00 | -1.195 | 1589 | 0211 | .2014 | 0093 | 0012 | | | 1.27 | 24.73 | 0.00 | -1.156 | 1846 | 0162 | .2012 | 0081 | 0006 | | | 1.27 | 26.55 | 0.00 | -1.111 | 2161 | 0140 | .2001 | 0075 | .0006 | | Run | M | α | β | c_{χ} | $^{\mathrm{C}}^{\mathrm{Z}}$ | $^{\mathrm{C}}\mathbf{_{Y}}$ | C _m | C _n | C | |-----|--------------|----------------|--------------|------------------|------------------------------|------------------------------|----------------|----------------|----------------| | 25 | 0.60 | 17.00 | -4.03 | -0.859 | 0070 | .0652 | .0393 | .0090 | 0021 | | | 0.60 | 17.00 | -2.15 | -0.854 | 0064 | .0227 | .0387 | 0035 | .0075 | | | 0.60
0.60 | 17.00 | -0.31 | -0.858 | .0026 | 0221 | .0376 | 0152
0247 | .0121 | | | 0.60 | 17.00
17.00 | 1.61
3.54 | -0.859 | .0000
.0012 | 0638 | .0394 | 0247 | .0150
.0240 | | | 0.60 | 17.00 | 5.47 | -0.854
-0.857 | 0023 | 1028
1228 | .0378 | 03/4 | .0396 | | | 0.60 | 17.00 | 7.38 | -0.860 | 0023 | 1228 | .0505 | 0407 | .0390 | | | 0.60 | 17.00 | 9.28 | -0.868 | 0134 | 1029 | .0547 | 0524 | | | | 0.00 | 17.00 | 9.20 | -0.508 | 0001 | 139/ | .0347 | 0524 | .0752 | | | | | | | | | | | | | 26 | 0.90 | 17.00 | -4.04 | -1.137 | .0292 | .0681 | .0913 | .0120 | .0005 | | | 0.90 | 17.00 | -2.14 | -1.133 | .0439 | .0103 | .0848 | 0036 | .0037 | | | 0.90 | 17.00 | -0.39 | -1.133 | .0530 | 0359 | .0833 | 0137 | .0024 | | | 0.90 | 17.00 | 1.56 | -1.141 | .0496 | 0906 | .0876 | 0282 | .0072 | | | 0.90 | 17.00 | 3.51 | -1.142 | .0402 | 1507 | .0919 | 0451 | .0098 | | | 0.90 | 17.00 | 5.46 | -1.137 | .0387 | 1883 | .0970 | 0608 | .0234 | | | 0.90 | 17.00 | 7.40 | -1.143 | .u345 | 2257 | .1036 | 0753 | .0415 | | | 0.90 | 17.00 | 9.30 | -1.143 | .0272 | 2649 | .1130 | 0903 | .0557 | 27 | 1.27 | 17.00 | -4.04 | -1.294 | 0961 | .0798 | .1963 | .0101 | 0007 | | | 1.27 | 17.00 | -2.10 | -1.286 | 0870 | .0148 | .1919 | 0043 | 0016 | | | 1.27 | 17.00 | -0.35 | -1.282 | 0877 | 0359 | .1911 | 0132 | .0019 | | | 1.27 | 17.00 | 1.52 | -1.294 | 0897 | 0957 | .1957 | 0254 | .0048 | | | 1.27 | 17.00 | 3.48 | -1.304 | 0965 | 1739 | .1998 | 0431 | .0045 | | | 1.27 | 17.00 | 5.46 | -1.303 | 1101 | 2467 | .2071 | 0634 | .0041 | | | 1.27 | 17.00 | 7.43 | -1.293 | 1134 | 3280 | .2111 | 0850 | 0002 | | | 1.27 | 17.00 | 9.40 | -1.281 | 1151 | 4226 | .2140 | 1060 | 0134 | | | | | | | | | | | | | 28 | 0.60 | 12.02 | 0.00 | -0.894 | .0672 | 0249 | .0362 | 0119 | .0102 | | | 0.60 | 13.89 | 0.00 | -0.891 | .0370 | 0221 | .0382 | 0141 | .0092 | | | 0.60 | 15.69 | 0.00 | -0.879 | .0158 | 0127 | .0385 | 0130 | .0109 | | | 0.60 | 17.52 | 0.00 | -0.865 | .0003 | 0086 | .0376 | 0119 | .0115 | | | 0.60 | 19.42 | 0.00 | -0.851 | 0162 | 0083 | .0387 | 0107 | .0074 | | | 0.60 | 21.32 | 0.00 | -0.834 | 0341 | 0069 | .0402 | 0097 | .0029 | | | 0.60 | 23.24 | 0.00 | -0.818 | 0498 | .0052 | .0435 | 0059 | .0021 | | | 0.60 | 25.15 | 0.00 | -0.799 | 0608 | .0050 | .0453 | 0042 | .0047 | | | 0.60 | 26.92 | 0.00 | -0.768 | 0732 | .0077 | .0446 | 0066 | .0060 | | Run | M | α | β | c_{X} | $^{\rm C}$ | $C_{\mathbf{y}}$ | $^{\rm C}_{ m m}$ | c _n | $C_{\mathbf{g}}$ | |-----|---------------------|-----------------------|----------------|------------------|----------------|------------------|-------------------|----------------|------------------| | 29 | 0.90
0.90 | 11.84
13.63 | 0.00 | -1.205
-1.195 | .1183 | 0340
0269 | .0734 | 0152
0131 | .0044 | | | $0.90 \\ 0.90$ | 15.42
17.13 | $0.00 \\ 0.00$ | -1.190
-1.170 | .0781
.0607 | 0215
0182 | .0811
.0833 | 0123
0111 | .0025
.0017 | | | $0.90 \\ 0.90$ | 19.03
20.92 | 0.00 | -1.150
-1.127 | .0342 | 0119
0089 | .0876
.0912 | 0096
0093 | .0027 | | | $0.90 \\ 0.90$ | 22.82
24.71 | 0.00 | -1.111
-1.088 | 0167
0381 | 0025
.0049 | .0972
.1019 | 0077
0049 | .0004 | | | 0.90 | 26.52 | 0.00 | -1.059 | 0575 | .0057 | .1022 | 0045 | .0012 | | | | | | | | | | | | | 30 | 1.27 | 11.93 | 0.00 | -1.347 | .0096 | 0446 | .1704 | 0153 | .0020 | | | 1.27
1.27 | 13.77
15.63 | $0.00 \\ 0.00$ | -1.340
-1.332 | 0179
0472 | 0440
0418 | .1801
.1912 | 0160
0152 | .0020 | | | 1.27 | 17.53 | 0.00 | -1.315 | 0723 | 0355 | .1985 | 0136 | .0013 | | | 1.27 | 19.43 | 0.00 | -1.289 | 0984 | 0268 | .2025 | 0120 | .0007 | | | 1.27 | 21.31 | 0.00 | -1.259 | 1197 | 0199 | . 2034 | 0106 | .0014 | | | 1.27 | 23.19 | 0.00 | -1.221 | 1418 | 0123 | .2021 | 0086 | .0016 | | | $\frac{1.27}{1.27}$ | 25.07
26.84 | $0.00 \\ 0.00$ | -1.180
-1.138 | 1663
1804 | 0069
0010 | .1989
.1914 | 0070
0053 | .0022 | | | 1.2/ | 20.64 | 0.00 | ~1.136 | -,1004 | 0010 | .1914 | 0033 | .0023 | | 51 | 0.60 | 17.00 | -4.35 | -0.869 | .0035 | .0682 | .0401 | .0117 | 0054 | | | 0.60 | 17.00 | -2.40 | -0.867 | .0040 | .0296 | .0389 | 0004 | .0079 | | | 0.60 | 17.00 | -0.57 | -0.869 | .0100 | 0133 | .0380 | 0139 | .0116 | | | 0.60 | 17.00 | 1.36 | -0.865 | .0121 | 0583 | .0378 | 0239
0369 | .0160 | | | $0.60 \\ 0.60$ | 17.00
17.00 | 3.30
5.23 | -0.865
-0.855 | .0137
.0116 | 1019
1268 | .0365
.0408 | 0369 | .0211 | | | 0.60 | 17.00 | 7.14 | -0.866 | .0101 | 1253 | .0460 | 0478 | .0598 | | | 0.60 | 17.00 | 9.04 | -0.870 | .0083 | 1362 | .0546 | 0546 | .0~49 | | | | | | | | | | | | | 32 | .90 | 17.00 | -5.04 | -1.160 | .0405 | .1024 | .0911 | .0225 | 0096 | | | 0.90 | 17.00 | -3.19 | -1.155 | .0510 | .0578 | .0856 | .0070 | 0024 | | | 0.90 | 17.00 | -1.39 | -1.156 | .0648 | .0067 | .0813 | 0046 | .0037 | | | $0.90 \\ 0.90$ | $\frac{17.00}{17.00}$ | $0.36 \\ 2.10$ | -1.160
-1.160 | .0660
.0674 | 0487
0995 | .0831
.0846 | 0179
0312 | .0018 | | | 0.90 | 17.00 | 3.94 | -1.154 | .06.4 | 1573 | .0886 | 0312 | .0102 | | | 0.90 | 17.00 | 5.89 | -1.134 | .0555 | 2095 | .0950 | 0664 | .0196 | | | 0.90 | 17.00 | 7.80 | -1.152 | .0539 | 2388 | .1033 | 0797 | .0422 | | | 0.90 | 17.00 | 9.64 | -1.152 | .0493 | 2800 | .1087 | 0952 | .0542 | | Run | M | α | β | $c_{\rm X}$ | CZ | C_{Y} | C _m | $c_{\mathbf{n}}$ | C ₂ | |-----|--|---|---|--|--|--|---|--|--| | 33 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -3.94
-2.10
-0.17
1.76
3.69
5.64
7.58
9.50 | -1.325
-1.322
-1.322
-1.333
-1.343
-1.346
-1.334
-1.314 | 0791
0671
0648
0699
0769
0791
0724
0689 | .0775
.0137
0450
1090
1794
2587
3440
4257 | .2010
.1968
.1966
.2022
.2061
.2099
.2097
.2086 | .0101
0040
0152
0294
0458
0681
0898
1085 | 0040
0021
.0021
.0040
.0061
.0052
0016
0092 | | 34 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 11.93
13.92
15.80
17.73
19.63
21.54
23.47
25.36 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.869
-0.863
-0.853
-0.838
-0.819
-0.801
-0.787
-0.759 | .0831
.0435
.0138
0093
0310
0516
0700
0819 | 0183
0129
0053
0023
0085
0029
0012 | .0306
.0364
.0371
.0383
.0398
.0426
.0482 | 0072
0118
0117
0112
0110
0084
0055
0060 | .0063
.0088
.0113
.0115
.0077
.0029
.0033 | | 35 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.87
13.79
15.59
17.51
19.43
21.35
23.28
25.18 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.155
-1.151
-1.142
-1.124
-1.105
-1.082
-1.064
-1.035 | .1188
.0986
.0731
.0481
.0179
0110
0429
0694 | 0333
0250
0194
0167
0106
0017
0035
0063 | .0686
.0730
.0784
.0828
.0887
.0969
.1047
.1085 | 0149
0120
0109
0097
0100
0073
0058
0059 | .0029
.0026
.0027
.0030
.0017
.0050
.0047 | | 36 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 11.88
13.73
15.62
17.45
19.37
21.29
23.21
25.10
26.91 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.303
-1.287
-1.269
-1.245
-1.219
-1.187
-1.150
-1.108
-1.065 | 0054
0402
0716
0993
1270
1555
1813
2003
2150 | 0367
0311
0314
0268
0222
0217
0170
0136
0100 | .1622
.1713
.1798
.1859
.1907
.1949
.1959
.1923
.1861 | 0137
0122
0126
0115
0102
0091
0082
0072
0068 | .0005
.0004
.0011
.0015
.0006
.0012
.0016
.0022 | | Run | M | α | β | c_{X} | c_{z} | Сү | C _m | C _n | C g | |-----|--
---|---|--|--|--|--|--|--| | 37 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.03
-2.16
-0.35
1.55
3.45
5.34
7.24
9.11 | -0.839
-0.843
-0.841
-0.835
-0.831
-0.829
-0.831 | 0007
.0035
.0044
.0053
0003
0029
0077 | .0586
.0264
0112
0493
0928
1118
1244
1121 | .0382
.0374
.0369
.0379
.0386
.0397
.0462
.0493 | .0097
0029
0122
0223
0351
0423
0508
0497 | .0009
.0047
.0118
.0155
.0188
.0326
.0568 | | 38 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.07
-2.09
-0.14
1.80
3.74
5.69
7.63
9.50 | -1.122
-1.119
-1.117
-1.116
-1.107
-1.097
-1.095
-1.100 | .0410
.0511
.0587
.0631
.0524
.0416
.0317 | .0680
.0241
0275
0761
1258
1695
2200
2348 | .0857
.0819
.0791
.0818
.0863
.0918
.0993 | .0123
0006
0124
0256
0409
0551
0706
0805 | .0002
.0033
.0027
.0070
.0124
.0190
.0313 | | 39 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -3.95
-2.09
-0.33
1.43
3.38
5.34
7.30
9.25 | -1.261
-1.255
-1.249
-1.259
-1.270
-1.268
-1.264
-1.254 | 0991
0933
0915
0960
1016
1101
1104
1099 | .0736
.0158
0307
0843
1530
2148
2822
3615 | .1859
.1843
.1826
.1863
.1897
.1950
.1977
.1979 | .0103
0028
0119
0232
0394
0568
0767
0965 | 0035
0022
.0022
.0059
.0058
.0078
.0083 | | 40 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 11.99
13.83
15.62
17.36
19.17
20.89
22.72
24.62
26.45 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.877
-0.866
-0.861
-0.852
-0.835
-0.824
-0.800
-0.787 | .0897
.0628
.0296
.0079
0137
0317
0513
0649
0822 | 0186
0137
0110
0038
0059
0066
.0009
.0065 | .0301
.0337
.0342
.0369
.0379
.0397
.0414
.0475 | 0078
0072
0110
0112
0110
0100
0072
0043
0059 | .0047
.0071
.0119
.0111
.0110
.0030
.0027
.0051 | | Run | М | α | β | c_{χ} | c_{z} | C _Y | C _m | $C_{\mathbf{n}}$ | C g | |-----|--|---|---|--|--|--|--|--|--| | 41 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.87
13.72
15.59
17.32
19.14
21.05
22.97
24.87
26.67 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.178
-1.174
-1.160
-1.148
-1.126
-1.106
-1.085
-1.058
-1.026 | .1367
.1156
.0909
.0734
.0474
.0159
0115
0405 | 0329
0221
0171
0141
0115
0069
0018
.0000 | .0662
.0701
.0729
.0777
.0812
.0881
.0943
.0998 | 0136
0116
0103
0091
0092
0078
0069
0055
0058 | .0025
.0035
.0027
.0026
.0020
.0023
.0028
.0039 | | 42 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 11.93
13.84
15.72
17.53
19.43
21.32
23.21
25.08
26.88 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.342
-1.327
-1.304
-1.282
-1.255
-1.222
-1.188
-1.149
-1.107 | .003803030625088511411384162419012178 | 0366
0299
0288
0233
0178
0130
0106
0075
0068 | .1682
.1780
.1855
.1910
.1953
.1981
.2001
.2011 | 0125
0125
0122
0109
0096
0082
0073
0065
0063 | 0001
.0019
.0001
.0002
0006
0003
.0000
.0002 | | 43 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.03
-2.16
-0.43
1.41
3.32
5.25
7.16
9.06 | -0.851
-0.852
-0.854
-0.852
-0.847
-0.839
-0.839
-0.838 | .0136
.0147
.0116
.0146
.0103
.0094
.0070 | .0541
.0226
0109
0502
0973
1221
1216
1303 | .0395
.0373
.0358
.0349
.0360
.0373
.0459 | .01010018011702170350044005320578 | 0038
.0051
.0105
.0154
.0180
.0271
.0629
.0795 | | 44 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.06
-2.19
-0.36
1.37
3.20
5.13
7.06
8.96 | -1.148
-1.142
-1.139
-1.136
-1.142
-1.124
-1.120
-1.123 | .0584
.0651
.0722
.0763
.0794
.0684
.0580 | .0736
.0283
0202
0666
1148
1665
2172
2414 | .0808
.0782
.0757
.0770
.0809
.0849
.0923 | .0152
.0007
0108
0227
0371
0526
0699
0810 | .0006
.0022
.0023
.0035
.0112
.0146
.0227 | | Run | М | α | β | c_{χ} | C ₂ | c_{Y} | C _m | $c_{\mathbf{n}}$ | C. | |-----|--|---|---|--|--|--|---|--|--| | 45 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.04
-2.19
-0.33
1.61
3.54
5.49
7.43
9.37 | -1.307
-1.299
-1.292
-1.301
-1.312
-1.311
-1.303
-1.291 | 0901
0835
0822
0860
0918
1026
1042
1039 | .0832
.0222
0307
0904
1625
2302
3025
3868 | .1952
.1922
.1899
.1941
.1978
.2029
.2060
.2077 | .0121
0014
0120
0246
0411
0593
0797
0995 | 0020
0025
.0006
.0043
.0046
.0028
.0017
0076 | | 46 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.06
13.95
15.74
17.47
19.20
20.92
22.73
24.64
26.47 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.879
-0.868
-0.866
-0.852
-0.839
-0.819
-0.804
-0.794 | .0955
.0699
.0343
.0111
0075
0256
0464
0597
0737 | 0202
0154
0118
0059
0045
0009
.0027
.0071 | .0283
.0312
.0354
.0354
.0356
.0356
.0391
.0446 | 0081
0073
0117
0114
0116
0097
0079
0050
0064 | .0052
.0055
.0087
.0116
.0076
.0068
.0036
.0013 | | 47 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.93
13.78
15.64
17.45
19.35
21.24
23.14
25.03
26.83 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.185
-1.176
-1.170
-1.153
-1.129
-1.104
-1.082
-1.060
-1.030 | .1373
.1172
.0933
.0693
.0477
.0191
0113
0360
0578 | 0268
0182
0141
0105
0095
0041
0022
.0045
.0028 | .0675
.0707
.0749
.0790
.0815
.0874
.0930
.0990
.1013 | 0136
0110
0095
0087
0085
0072
0051
0048 | .0015
.0037
.0031
.0039
.0021
0010
.0000
.0048
.0025 | | 48 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 11.97
13.87
15.74
17.47
19.27
21.16
23.05
24.93
26.72 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -1.365
-1.354
-1.342
-1.323
-1.296
-1.264
-1.225
-1.182
-1.138 | .018401160387062808441071133715261710 | 0319
0322
0319
0261
0223
0177
0063
0014
.0005 | .1713
.1802
.1887
.1950
.1977
.1990
.1988
.1947 | 0116
0122
0123
0114
0102
0093
0073
0060
0049 | .0009
.0000
0020
0002
.0003
.0009
.0007
.0011 | | Run | M | α | β | c _x | c_{Z} | $^{\mathrm{C}}\mathbf{Y}$ | C _m | C _n | C. | |-----|--------------|----------------|--------------|----------------|---------|---------------------------|----------------|----------------|--------| | 49 | 0.60 | 17.00 | -4.07 | -0.848 | .0233 | .0568 | .0376 | .0136 | - 0054 | | | 0.60 | 17.00 | -2.22 | -0.853 | .0225 | .0317 | .0361 | .0014 | .0049 | | | 0.60 | 17.00 | -0.49 | -0.852 | .0170 | 0095 | .0346 | 0114 | .0102 | | | 0.60 | 17.00 | 1.32 | -0.854 | .0182 | 0428 | .0351 | 0205 | .0190 | | | 0.60 | 17.00 | 3.22 | -0.856 | .0189 | 0899 | .0346 |
0344 | .0191 | | | 0.60 | 17.00 | 5.14 | -0.845 | .0158 | 1273 | .0345 | 0453 | .0271 | | | 0.60 | 17.00 | 7.03 | -0.847 | .0133 | 1267 | .0416 | 0548 | .0441 | | | 0.60 | 17.00 | 8.90 | -0.849 | .0193 | 1053 | . 0443 | 0455 | .0667 | | 50 | 0.90 | 17 00 | 4 14 | 1 151 | | | | | | | 20 | 0.90 | 17.00 | -4.14 | -1.151 | .0631 | .0822 | .0815 | .0173 | .0000 | | | 0.90 | 17.00 | -2.28 | -1.152 | .0684 | .0384 | .0792 | .0022 | .0017 | | | 0.90 | 17.00
17.00 | -0.44 | -1.145 | .0779 | 0156 | .0762 | 0102 | .0017 | | | 0.90 | 17.00 | 1.31 | -1.143 | .0800 | 0674 | .0772 | 0228 | .0024 | | | 0.90 | 17.00 | 3.04 | -1.137 | .0805 | 1084 | .0802 | 0357 | .0097 | | | 0.90 | 17.00 | 4.98
6.91 | -1.125 | .0720 | 1600 | .0849 | 0517 | .0136 | | | 0.90 | 17.00 | 8.82 | -1.120 | .0617 | 2107 | .0919 | 0687 | .0209 | | | 0.30 | 17.00 | 0.02 | -1.127 | .0549 | 2368 | .1008 | 0797 | .0428 | | 51 | 1.27 | 17.00 | -4.06 | -1.335 | 0674 | . 0886 | .1972 | .0139 | 0042 | | | 1.27 | 17.00 | -2.16 | -1.330 | ~.0587 | .0235 | .1943 | 0007 | 0051 | | | 1.27 | 17.00 | -0.42 | -1.325 | 0562 | 0251 | .1920 | 0115 | .0001 | | | 1.27 | 17.00 | 1.51 | -1.333 | 0580 | 0854 | .1960 | 0243 | .0043 | | | 1.27 | 17.00 | 3.44 | -1.342 | 0630 | 1552 | .2002 | 0405 | .0049 | | | 1.27 | 17.00 | 5.37 | -1.342 | 0682 | 2207 | .2031 | 0584 | .0060 | | | 1.27 | 17.00 | 7.31 | -1.333 | 0672 | 2961 | .2030 | 0781 | .0048 | | | 1.27 | 17.00 | 9.22 | -1.315 | 0567 | 3708 | . 2003 | 0974 | 0019 | | 52 | 0.60 | 11 02 | 0.00 | 0.057 | | | | | | | 32 | 0.60 | 11.92 | 0.00 | -0.853 | .1082 | 0323 | .0252 | 0101 | .0026 | | | 0.60 | 13.81 | 0.00 | -0.839 | .0821 | 0250 | .0279 | 0084 | .0043 | | | 0.60 | 15.63
17.38 | 0.00 | -0.826 | .0567 | 0184 | .0298 | 0073 | .0055 | | | 0.60 | | 0.00 | -0.817 | .0199 | 0152 | .0334 | 0107 | .0110 | | | 0.60 | 19.30
21.23 | 0.00 | -0.802 | 0113 | 0077 | .0366 | 0114 | .0092 | | | 0.60 | 23.16 | 0.00 | -0.787 | 0409 | 0106 | . 0391 | 0111 | .0066 | | | 0.60 | 25.10 | 0.00
0.00 | -0.771 | 0611 | 0108 | .0449 | 0094 | .0006 | | | 0.60 | 26.84 | 0.00 | -0.749 | 0788 | 0073 | .0485 | 0065 | .0032 | | | 4. 00 | 20.04 | v. 00 | -0.714 | 0963 | .0051 | .0478 | 0064 | .0046 | | Run | M | α | β | c_{χ} | c_{z} | С _Y | C
m | $^{\text{C}}_{\text{n}}$ | C _e | |-----|------|-------|-------|------------|---------|----------------|--------|--------------------------|----------------| | | | | | | Č | • | ıu | n | Į. | | 53 | 0.90 | 11.78 | 0.00 | -1.119 | .1575 | 0274 | .0544 | 0120 | 0051 | | | 0.90 | 13.67 | 0.00 | -1.109 | .1373 | 0262 | .0585 | 0120 | .0051 | | | 0.90 | 15.47 | 0.00 | -1.092 | .1108 | 0218 | .0609 | 0096 | .0028 | | | 0.90 | 17.22 | 0.00 | -1.081 | .0911 | 0104 | .0650 | 0083 | .0041 | | | 0.90 | 19.04 | 0.00 | -1.071 | .0686 | .0005 | .0711 | 0062 | .0033
.0057 | | | 0.90 | 20.96 | 0.00 | -1.045 | .0407 | .0070 | .0754 | 0047 | .0037 | | | 0.90 | 22.90 | 0.00 | -1.019 | .0079 | .0056 | .0816 | 0045 | .0077 | | | 0.90 | 24.81 | 0.00 | -0.993 | 0270 | .0018 | .0882 | 0043 | .0076 | | | 0.90 | 26.64 | 0.00 | -0.959 | 0566 | 0036 | .0913 | 0050 | .0034 | | | | | | | | | | | | | 54 | 1.27 | 11.84 | 0.00 | -1.369 | .0721 | 0187 | .1598 | - 0007 | 0016 | | | 1.27 | 13.74 | 0.00 | -1.351 | .0370 | 0208 | .1656 | 0093 | .0016 | | | 1.27 | 15.68 | 0.00 | -1.328 | .0024 | 0221 | .1714 | 0088 | .0000 | | | 1.27 | 17.66 | 0.00 | -1.304 | 0298 | 0202 | .1771 | 0085 | 0007 | | | 1.27 | 19.61 | 0.00 | -1.272 | 0633 | 0179 | .1824 | 0095
0092 | 0014 | | | 1.27 | 21.57 | 0.00 | -1.230 | 0969 | 0092 | .1860 | 0092 | 0015 | | | 1.27 | 23.54 | 0.00 | -1.188 | 1257 | 0038 | .1870 | 0081 | .0000 | | | 1.27 | 25.47 | 0.00 | -1.143 | 1537 | 0005 | .1870 | 00/1 | .0008 | | | | | | | 1200, | .0003 | .10/0 | 0001 | .0016 | | 55 | 0.60 | 17.00 | -3.98 | -0.817 | . 0350 | .0520 | . 0298 | 01.77 | 2010 | | | 0.60 | 17.00 | -2.18 | -0.820 | .0363 | .0181 | .0298 | .0133 | .0010 | | | 0.60 | 17.00 | -0.25 | -0.816 | .0294 | 0089 | .0313 | .0013 | .0004 | | | 0.60 | 17.00 | 1.67 | -0.823 | .0205 | 0480 | .0327 | 0091 | .0123 | | | 0.60 | 17.00 | 3.58 | -0.820 | .0176 | 0782 | .0354 | 0228 | .0155 | | | 0.60 | 17.00 | 5.51 | -0.797 | .0173 | 1149 | .0334 | 0318
0437 | .0203 | | | 0.60 | 17.00 | 7.41 | -0.796 | .0114 | 0952 | .0384 | | .0288 | | | 0.60 | 17.00 | 9.29 | -0.795 | .0081 | 1163 | .0441 | 0459
05 3 5 | .0576 | | | | | | | | .1103 | .0441 | 0333 | .0674 | | 56 | 0.90 | 17.00 | -4.11 | -1.082 | . 0890 | .0550 | .0673 | .0102 | 0050 | | | 0.90 | 17.00 | | -1.093 | .0988 | .0192 | .0661 | .0102 | 0058 | | | 0.90 | 17.00 | | -1.084 | .0968 | 0152 | .0651 | 0082 | .0009 | | | 0.90 | 17.00 | 1.23 | -1.085 | .0994 | 0394 | .0642 | 0166 | .0014 | | | 0.90 | 17.00 | 2.96 | -1.086 | .0964 | 0703 | .0679 | 0270 | .0097 | | | 0.90 | 17.00 | | -1.076 | .0965 | 1110 | .0702 | 0404 | .0159 | | | 0.90 | 17.00 | | -1.061 | .0860 | 1493 | .0731 | 0524 | .0188 | | | 0.90 | 17.00 | | -1.053 | .0866 | 1896 | .0762 | 0661 | .0249 | | | | | | | | | .0/02 | 000T | .0307 | | Run | М | α | β | $^{\text{C}}_{\chi}$ | $^{\mathrm{C}}_{\mathrm{Z}}$ | C_{Y} | $C_{\mathbf{m}}$ | C _n | C ₂ | |-----|--|---|---|--|--|---|--|--|---| | \$7 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.08
-2.17
-0.24
1.59
3.50
5.42
7.34
9.24 | -1.324
-1.319
-1.316
-1.323
-1.324
-1.321
-1.316 | 0278
0244
0214
0212
0250
0287
0328
0360 | .0788
.0282
0212
0700
1159
1653
2277
2824 | .1773
.1752
.1749
.1757
.1790
.1812
.1848
.1867 | .0157
.0025
0096
0216
0338
0478
0625
0782 | 0053
0034
0007
.0000
.0054
.0076
.0085
.0068 | | 58 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.06
13.90
15.68
17.51
19.23
20.95
22.69
24.41
26.12 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.146
-0.136
-0.131
-0.116
-0.105
-0.102
-0.102
-0.101
-0.096 | 1222
1256
1291
1277
1295
1296
1340
1354
1329 | 0485
0533
0579
0515
0504
0510
0535
0495
0490 | .1171
.1115
.1090
.0990
.0924
.0890
.0868
.0836 | 0162
0167
0168
0156
0146
0145
0147
0143 | 0239
0275
0306
0269
0256
0239
0237
0196
0173 | | 59 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 12.05
13.86
15.74
17.37
19.11
20.83
22.56
24.30
26.01 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.219 -0.208 -0.200 -0.193 -0.184 -0.175 -0.176 -0.179 | 1182
1215
1216
1247
1277
1284
1295
1286
1269 | 0439
0532
0633
0683
0701
0761
0828
0842
0718 | .1627
.1573
.1507
.1446
.1389
.1330
.1324
.1338 | 0195
0206
0214
0213
0208
0215
0226
0230
0201 | 0197
0229
0277
0318
0317
0323
0348
0350
0310 | | 60 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 12.05
13.92
15.81
17.50
19.21
20.92
22.63
24.34
26.22 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.231
-0.227
-0.234
-0.222
-0.202
-0.186
-0.165
-0.145
-0.138 | 0687
0699
0743
0763
0768
0799
0823
0841
0835 | 0062
0045
0261
0212
0150
0133
0063
0020
.0004 | .1697
.1678
.1744
.1667
.1539
.1456
.1326
.1200 | 0132
0142
0200
0187
0164
0148
0097
0074
0068 | 0067
0040
0113
0103
0055
0028
.0000
.0038
.0040 | | Run | M | α | β | c_{X} | c_{Z} | C_{Y} | $C_{\mathbf{m}}$ | c _n | C ₂ | |-----|--|---|---|--|--|--|--|--|--| | | | | | | | | | | | | 61 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.04
13.89
15.77
17.50
19.22
20.94
22.66
24.38
26.18 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.544
-0.547
-0.547
-0.537
-0.534
-0.533
-0.530
-0.524
-0.517 | 1442
1518
1624
1771
1741
1724
1703
1739
1785 | 0704
0904
1032
1056
1002
0987
0925
0830
0784 | .1745
.1804
.1805
.1811
.1794
.1815
.1831
.1836 | 0119
0170
0187
0190
0179
0196
0206
0208
0221 | .0291
.0214
.0134
.0093
.0074
.0024
0005
0005 | | | | | | | | | | | | | 62 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 12.05
13.90
15.78
17.50
19.32
21.04
22.77
24.79
26.28 |
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.708
-0.694
-0.680
-0.674
-0.671
-0.666
-0.661
-0.657
-0.656 | 0592
0696
0806
0906
1036
1188
1304
1402
0511 | 1174
1108
1013
0897
0679
0690
0647
0615
0515 | . 2015
. 2032
. 2073
. 2123
. 2203
. 2274
. 2321
. 2368
. 2427 | 0218
0207
0190
0173
0140
0141
0138
0145
0145 | 0233
0227
0206
0149
0047
0107
0141
0180
0185 | | 63 | 1.27
1.27
1.27
1.27
1.27
1.27
1.27
1.27 | 12.06
13.97
15.85
17.57
19.39
21.10
22.81
24.52
26.39 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.825
-0.832
-0.819
-0.807
-0.792
-0.771
-0.755
-0.746
-0.730 | 0131
0280
0487
0661
0841
0966
1047
1094
1158 | 0882
0899
0894
0809
0723
0616
0538
0416
0290 | .2462
.2624
.2743
.2834
.2917
.2979
.3012
.3005
.3003 | 0163
0171
0172
0159
0149
0129
0111
0084
0061 | 0146
0155
0176
0189
0177
0165
0170
0206
0189 | | 64 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -3.95
-1.97
-0.26
1.46
3.17
4.89
6.62
8.33 | -0.581
-0.565
-0.550
-0.532
-0.535
-0.544
-0.533
-0.520 | 1594
1707
1709
1594
1474
1389
1235
1046 | 0432
0686
1008
0959
1039
1145
1564
2078 | .1949
.1884
.1842
.1804
.1773
.1742
.1646 | 0169
0145
0163
0129
0122
0114
0175
0249 | .0106
.0136
.0103
.0109
.0114
.0137
.0011 | | Run | M | α | β | $^{\mathrm{C}}\mathrm{\chi}$ | c_{z} | $^{\mathrm{C}}_{\mathrm{Y}}$ | $^{\rm C}_{\rm m}$ | C _n | C. | |-----|------|-------|-------|------------------------------|---------|------------------------------|--------------------|----------------|-------| | 65 | 0.90 | 17.00 | -4.02 | -0.689 | 0991 | 0320 | .2208 | 0102 | 0100 | | | 0.90 | 17.00 | -2.05 | -0.689 | 0880 | 0714 | .2128 | 0155 | 0140 | | | 0.90 | 17.00 | -0.33 | -0.681 | 0913 | 1122 | .2101 | 0216 | 0208 | | | 0.90 | 17.00 | 1.39 | -0.662 | 1012 | 1394 | .2126 | 0258 | 0287 | | | 0.90 | 17.00 | 3.11 | -0.669 | 0935 | 1522 | .2098 | 0281 | 0297 | | | 0.90 | 17.00 | 4.84 | -0.679 | 0871 | 1641 | .2090 | 0322 | 0294 | | | 0.90 | 17.00 | 6.57 | -0.678 | 0704 | 1634 | .2036 | 0315 | 0242 | | | 0.90 | 17.00 | 8.29 | -0.697 | 0586 | 2000 | .2108 | 0309 | 0284 | | | | | | | | | | | | | 66 | 1.27 | 17.00 | -3.97 | -0.800 | 0506 | .0043 | .2766 | .0011 | 0040 | | | 1.27 | 17.00 | -2.09 | -0.813 | 0527 | 0442 | .2785 | 0086 | 0106 | | | 1.27 | 17.00 | -0.39 | -0.814 | 0528 | 0806 | .2770 | 0150 | 0142 | | | 1.27 | 17.00 | 1.34 | -0.803 | 0571 | 1201 | .2776 | 0219 | 0248 | | | 1.27 | 17.00 | 3.05 | -0.782 | 0414 | 1321 | .2642 | 0215 | 0296 | | | 1.27 | 17.00 | 4.77 | -0.773 | 0352 | 1692 | .2598 | 0264 | 0433 | | | 1.27 | 17.00 | 6.50 | -0.775 | 0315 | 2105 | .2606 | 0332 | 0570 | | | 1.27 | 17.00 | 8.21 | -0.781 | 0269 | 2516 | . 2636 | 0403 | 0722 | | | | | | | | | | | | | 67 | 0.60 | 12.01 | 0.00 | -0.899 | 1391 | 0808 | .1238 | 0277 | .0114 | | | 0.60 | 13.91 | 0.00 | -0.892 | 1634 | 0656 | .1286 | 0236 | .0105 | | | 0.60 | 15.80 | 0.00 | -0.879 | 1771 | 0370 | .1253 | 0165 | .0201 | | | 0.60 | 17.52 | 0.00 | -0.870 | 1867 | 0147 | .1228 | 0103 | .0247 | | | 0.60 | 19.23 | 0.00 | -0.859 | 1965 | 0036 | .1223 | 0068 | .0276 | | | 0.60 | 21.04 | 0.00 | -0.852 | 2041 | 0116 | .1248 | 0078 | .0245 | | | 0.60 | 22.77 | 0.00 | -0.837 | 2169 | 0106 | .1277 | 0050 | .0194 | | | 0.60 | 24.50 | 0.00 | -0.825 | 2250 | .0003 | .1259 | .0007 | .0176 | | | 0.60 | 26.40 | 0.00 | -0.808 | 2379 | .0171 | .1279 | .0098 | .0182 | | | | | | | | | | | | | 68 | 0.90 | 12.03 | 0.00 | -1.131 | 1358 | 1863 | .2003 | 0607 | .0245 | | | 0.90 | 13.90 | 0.00 | -1.126 | 1505 | 1785 | .2048 | 0575 | .0231 | | | 0.90 | 15.90 | 0.00 | -1.120 | 1676 | 1765 | .2087 | 0532 | .0169 | | | 0.90 | 17.61 | 0.00 | -1.117 | 1815 | 1716 | .2128 | 0503 | .0132 | | | 0.90 | 19.34 | 0.00 | -1.111 | 1957 | 1643 | .2168 | 0462 | .0096 | | | 0.90 | 21.06 | 0.00 | -1.105 | 2093 | 1577 | .2209 | 0425 | .0048 | | | 0.90 | 22.78 | 0.00 | -1.093 | 2229 | 1397 | .2265 | 0372 | .0040 | | | 0.90 | 24.50 | 0.00 | -1.073 | 2407 | 1240 | .2308 | 0301 | .0006 | | | 0.90 | 26.59 | 0.00 | -1.053 | 2671 | 1025 | .2386 | 0205 | .0012 | | Run | M | α | β | c_{χ} | $^{\text{C}}_{\text{Z}}$ | c_{Y} | C _m | C _n | C ₂ | |-----|--------------|----------------|----------------|------------------|--------------------------|--------------|---|----------------|----------------| | | | | | | | | | | | | 69 | 1.27 | 12.03 | 0.00 | -1.255 | 1666 | 3111 | .2694 | 0796 | 0162 | | | 1.27 | 13.96 | 0.00 | -1.255 | 1835 | 3092 | .2751 | 0766 | 0200 | | | 1.27
1.27 | 15.86
17.70 | $0.00 \\ 0.00$ | -1.249
-1.246 | 1993
2120 | 3056
3011 | .2798
.2852 | 0738
0707 | 0257
0325 | | | 1.27 | 19.41 | 0.00 | -1.239 | 2162 | 2821 | .2858 | 0635 | 0369 | | | 1.27 | 21.13 | 0.00 | -1.222 | 2249 | 2530 | .2863 | 0532 | 0389 | | | 1.27 | 22.86 | 0.00 | -1.201 | 2387 | 2297 | .2881 | 0447 | 0419 | | | 1.27 | 24.58 | 0.00 | -1.171 | 2540 | 2081 | .2878 | 0366 | 0443 | | | 1.27 | 26.46 | 0.00 | -1.137 | 2689 | 1831 | .2875 | 0288 | 0461 | | | | | | | | | | | | | 70 | 0.60 | 17.00 | -3.96 | -0.872 | 1933 | 0131 | .1376 | 0075 | .0021 | | | 0.60 | 17.00 | -2.08 | -0.864 | 2088 | 0404 | .1362 | 0148 | .0061 | | | 0.60 | 17.00 | -0.25 | -0.858 | 2059 | 0562 | .1258 | 0195 | .0178 | | | 0.60 | 17.00 | 1.60 | -0.859 | 1869 | 0534 | .1146 | 0239 | .0453 | | | 0.60 | 17.00 | 3.35 | -0.876 | 1727 | 0682 | .1138 | 0314 | .0668 | | | 0.60
0.60 | 17.00
17.00 | 5.10
6.87 | -0.899
-0.914 | 1615
1672 | 1083
1642 | .1133 | 0414
0506 | .0768 | | | 0.60 | 17.00 | 8.64 | -0.909 | 1536 | 2259 | .1130 | 0644 | .0651 | | | 0.00 | 17,00 | 0,0, | 0.000 | .1000 | .2000 | • * * * * * * * * * * * * * * * * * * * | 10011 | 10031 | | 71 | 0.90 | 17.00 | -3.92 | -1.126 | 2106 | 0864 | .2320 | 0273 | .0099 | | . • | 0.90 | 17.00 | -2.00 | -1.118 | 1946 | 1307 | .2204 | 0400 | .0130 | | | 0.90 | 17.00 | -0.26 | -1.113 | 1797 | 1738 | .2103 | 0517 | .0156 | | | 0.90 | 17.00 | 1.49 | -1.104 | 1655 | 2183 | .2028 | 0643 | .0176 | | | 0.90 | 17.00 | 3.25 | -1.102 | 1613 | 2565 | .2007 | 0749 | .0193 | | | 0.90 | 17.00 | 5.00 | -1.107 | 1534 | 2812 | .2027 | 0812 | .0274 | | | 0.90 | 17.00 | 6.75 | -1.119 | 1493 | 3071 | .2057 | 0886 | .0269 | | | 0.90 | 17.00 | 8.49 | -1.113 | 1503 | 3284 | .2012 | 0957 | .0358 | | | | | | | | | | | | | 72 | 1.27 | 17.00 | -3.86 | -1.212 | 2323 | 1439 | .2928 | 0310 | 0224 | | | 1.27 | 17.00 | -1.78 | -1.239 | 2233 | 2346 | .2914 | 0507 | 0308 | | | 1.27 | 17.00 | -0.01 | -1.247 | 2198 | 3008 | .2876 | 0697 | 0315 | | | 1.27 | 17.00 | 1.76 | -1.247 | 2083 | 3525 | .2803 | 0838 | 0315 | | | 1.27 | 17.00 | 3.53 | -1.240 | 1996 | 4096 | .2762 | 0997 | 0364 | | | 1.27 | 17.00 | 5.32 | -1.232 | 2041 | 4709 | .2790 | 1155 | 0458 | | | 1.27
1.27 | 17.00
17.00 | 7.08 | -1.223 | -,1859 | 5116 | .2699 | 1245 | 0551 | | | 1.4/ | 17.00 | 8.84 | -1.213 | 1778 | 5705 | .2663 | 1381 | 0659 | | Run | M | α | β | c_{χ} | $c_{\overline{z}}$ | $^{\mathrm{C}}_{\mathrm{Y}}$ | $^{\rm C}_{ m m}$ | C _n | C ₂ | |-----|------|-------|-------|------------|--------------------|------------------------------|-------------------|----------------|----------------| | 73 | 0.60 | 11.89 | 0.00 | -0.946 | .1620 | 0108 | .0178 | 0264 | .0423 | | , , | 0.60 | 13.89 | 0.00 | -0.931 | .1020 | 0459 | .0207 | 0259 | .0199 | | | 0.60 | 15.79 | 0.00 | -0.917 | .0985 | 0548 | .0242 | 0241 | .0122 | | | 0.60 | 17.53 | 0.00 | -0.901 | .0750 | 0480 | .0265 | 0215 | .0194 | | | 0.60 | 19.28 | 0.00 | -0.877 | .0397 | 0358 | .0280 | 0216 | .0174 | | | 0.60 | 21.00 | 0.00 | -0.861 | .0146 | 0280 | .0315 | 0190 | .0166 | | | 0.60 | 22.75 | 0.00 | -0.842 | 0098 | 0289 | .0363 | 0173 | .0104 | | | 0.60 | 24.48 | 0.00 | -0.831 | 0326 | 0189 | .0452 | 0130 | .0108 | | | 0.60 | 26.28 | 0.00 | -0.816 | 0581 | 0150 | .0546 | 0109 | .0109 | | | | | | | | | | | | | 74 | 0.90 | 11.79 | 0.00 | -1.216 | .2009 | 0673 | .0465 | 0397 | .0247 | | | 0.90 | 13.62 | 0.00 | -1.178 | .1761 | 0873 | .0470 | 0417 | .0143 | | | 0.90 | 15.70 | 0.00 | -1.180 | .1565 | 0894 | .0520 | 0410 | .0127 | | | 0.90 | 17.43 | 0.00 | -1.191 | .1334 | 0886 | .0602 | 0400 | .0172 | | | 0.90 | 19.16 | 0.00 | -1.184 | .1082 | 0870 | .0681 | 0391 | .0175 | | | 0.90 | 20.89 | 0.00 | -1.166 | .0806 | 0773 | .0737 | 0359 | .0201 | | | 0.90 | 22.64 | 0.00 | -1.146 | .0503 | 0769 | .0826 | 0344 | .0185 | | | 0.90 | 24.38 | 0.00 | -1.124 | .0138 | 0820 | .0923 | 0317 | .0133 | | | 0.90 | 26.19 | 0.00 | -1.090 | 0242 | 0855 | .1006 | 0275 | .0065 | | | | | | | | | | | | | 75 | 1.27 | 11.81 | 0.00 | -1.479 | .0778 | 2255 | .1907 | 0561 | 0167 | | | 1.27 | 13.79 | 0.00 | -1.461 | .0462 | 2317 | .1944 | 0577 | 0189 | | | 1.27 | 15.91 | 0.00 | -1.435 | .0101 | 2296 | .1979 | 0569 | 0192 | | | 1.27 | 17.65 | 0.00 | -1.413 | 0229 | 2323 | . 2034 | 0573 | 0215 | | | 1.27 | 19.39 | 0.00 | -1.389 | 0546 | 2346 | .2095 | 0574 | 0235 | | | 1.27 | 21.33 | 0.00 | -1.361 | 0888 | 2347 | . 2162 | 0560 | 0259 | | | 1.27 | 23.07 | 0.00 | -1.332 | 1188 | 2333 | . 2224 | 0541 | -,0286 | | | | | | | | | | | | | 76 | 0.60 | 17.00 | -4.00 | -0.923 | .0797 | 0047 | .0317 | 0057 | 0021 | | | 0.60 | 17.00 | -2.11 | -0.922 | .0825 | 0292 | .0301 | 0142 | .0030 | | | 0.60 | 17.00 | -0.25 | -0.914 | .0832 | 0618 | .0293 | -,0233 | .0056 | | | 0.60 | 17.00 | 1.51 | -0.902 | .0812 | 0748 | .0287 | 0289 | .0128 | | | 0.60 | 17.00 | 3.27 | -0.888 | .0882 | 0955 | .0253 | 0369 | .0220 | | | 0.60 | 17.00 | 5.04 | -0.878 | .0907 | 1088 | .0249
 0431 | .0288 | | | 0.60 | 17.00 | 6.81 | -0.872 | .0925 | 1314 | .0251 | 0511 | .0329 | | | 0.60 | 17.00 | 8.58 | -0.868 | .0934 | 1497 | .0268 | 0589 | .0385 | | Run | M | α | β | C_{χ} | c_z | $C_{\mathbf{Y}}$ | $\mathbf{C}_{\mathbf{m}}$ | C _n | C. | |-----|--------------|------------------|-------|------------------|--------------|------------------|---------------------------|----------------|-------| | 77 | 0.90 | 17.00 | -4.00 | | .1236 | 0226 | .0696 | 0184 | .0047 | | | 0.90 | 17.00 | -2.04 | | .1358 | 0593 | .0630 | 0300 | .0082 | | | 0.90 | 17.00 | -0.11 | - - | .1453 | 0827 | .0574 | 0394 | .0150 | | | 0.90
0.90 | 17.00 | 1.61 | | .1519 | 1007 | .0532 | 0474 | .0251 | | | 0.90 | $17.00 \\ 17.00$ | 3.34 | | .1564 | 1297 | .0548 | 0583 | .0295 | | | 0.90 | 17.00 | 5.07 | | .1580 | 1598 | .0557 | 0690 | .0348 | | | 0.90 | 17.00 | 6.81 | -1.127 | .1562 | 1859 | .0578 | 0783 | .0387 | | | 0.90 | 17.00 | 8.54 | -1.120 | .1546 | 2136 | .0616 | 0879 | .0444 | | =0 | | | | | | | | | | | 78 | 1.27 | 17.00 | -3.92 | -1.414 | 0210 | 0985 | .2031 | 0250 | 0137 | | | 1.27 | 17.00 | -2.01 | -1.420 | 0191 | 1596 | .2042 | 0400 | 0172 | | | 1.27 | 17.00 | -0.15 | -1.421 | 0149 | 2153 | .2022 | 0538 | 0202 | | | 1.27 | 17.00 | 1.73 | -1.420 | 0103 | 2680 | .2011 | 0675 | 0226 | | | 1.27 | 17.00 | 3.49 | -1.420 | 0039 | 3217 | .2019 | 0809 | 0275 | | | 1.27 | 17.00 | 5.26 | -1.415 | .0012 | 3724 | .2022 | 0938 | 0323 | | | 1.27 | 17.00 | 7.03 | -1.408 | .0045 | 4258 | .2026 | 1067 | 0377 | | | 1.27 | 17.00 | 8.79 | -1.395 | .0091 | 4771 | .2011 | 1195 | 0422 | | 79 | 0.60 | 12.01 | 0.00 | -0.125 | 1167 | 0170 | 1001 | | | | | 0.60 | 13.84 | 0.00 | -0.113 | 1163
1135 | 0138 | .1001 | 0035 | 0056 | | | 0.60 | 15.62 | 0.00 | -0.113 | 1135 | 0110 | .0919 | 0032 | 0012 | | | 0.60 | 17.45 | 0.00 | -0.089 | 1072 | 0086 | .0840 | 0028 | .0016 | | | 0.60 | 19.37 | 0.00 | -0.087 | 1021 | 0026 | .0784 | 0023 | .0038 | | | 0.60 | 21.28 | 0.00 | -0.075 | 0595 | .0035 | .0765 | 0004 | .0098 | | | 0.60 | 23.20 | 0.00 | -0.070 | 0929 | .0050 | .0711 | .0003 | .0125 | | | 0.60 | 25.11 | 0.00 | -0.064 | 0963 | .0120
.0093 | .0656 | .0016 | .0152 | | | 0.60 | 26.88 | 0.00 | -0.059 | 0920 | .0163 | .0635 | .0014 | .0180 | | | | | | 0.055 | .0320 | .0103 | .0593 | .0037 | .0240 | | 80 | 0.90 | 12.10 | 0.00 | 0 211 | 1077 | 21.15 | | | | | | 0.90 | 13.94 | 0.00 | -0.211
-0.198 | 1037 | 0145 | .1544 | 0042 | 0061 | | | 0.90 | 15.81 | 0.00 | | 1035 | 0053 | . 1480 | 0020 | 0003 | | | 0.90 | 17.52 | 0.00 | -0.168
-0.147 | 0979 | .0039 | .1278 | .0006 | .0059 | | | 0.90 | 19.41 | 0.00 | -0.131 | 0981 | .0113 | .1146 | .0013 | .0120 | | | 0.90 | 21.29 | 0.00 | -0.131 | 0969 | .0179 | .1061 | .0031 | .0172 | | | 0.90 | 23.19 | 0.00 | -0.118 | 0959 | .0249 | .0977 | .0046 | .0221 | | | 0.90 | 25.07 | 0.00 | -0.107 | 0940 | .0297 | .0909 | .0052 | .0278 | | | 0.90 | 26.85 | 0.00 | -0.100 | 0953 | .0335 | .0871 | .0059 | .0324 | | | | 20.05 | 0.00 | -0.021 | 0957 | .0370 | .0818 | .0066 | .0361 | | Run | М | α | β | c_{χ} | $^{\mathrm{C}}_{\mathrm{Z}}$ | $^{\mathrm{C}}_{\mathrm{Y}}$ | $^{\mathrm{C}}_{\mathrm{m}}$ | $^{\text{C}}_{\text{n}}$ | C | |-----|--|---|---|--|--|--|---|--|---| | 81 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 12.03
13.90
15.73
17.61
19.47
21.31
25.17
25.01
26.76 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.161
-0.151
-0.137
-0.117
-0.105
-0.099
-0.090
-0.084
-0.082 | 0781
0749
0717
0670
0615
0610
0593
0613
0609 | 0226
0178
0086
.0037
.0143
.0180
.0226
.0277
.0327 | .1358
.1295
.1206
.1069
.0962
.0906
.0838
.0802 | 0064
0050
0027
.0000
.0018
.0027
.0041
.0051 | 0038
0004
.0050
.0120
.0166
.0196
.0237
.0285
.0340 | | 82 | 0.60
0.60
0.60
0.60
0.60
0.60
0.68 | 12.02
13.97
15.75
17.70
19.62
21.54
23.47
25.39 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.447
-0.433
-0.417
-0.401
-0.380
-0.367
-0.342
-0.321 | 1175
1173
1178
1230
1254
1286
1310
1279 | 0575
0490
0415
0323
0152
.0025
.0174
.0321 | .1758
.1742
.1699
.1668
.1613
.1554
.1466 | 0078
0092
0106
0113
0095
0091
0086
0097 | 0120
0129
0113
0091
0039
.0011
.0091 | | 83 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.99
13.88
15.67
17.42
19.15
20.87
22.70
24.62
26.42 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.603
-0.592
-0.569
-0.544
-0.524
-0.500
-0.477
-0.460
-0.438 | 0958
0970
1021
1071
1129
1227
1274
1332
1353 | 0324
0164
0120
0079
.0037
.0208
.0349
.0558
.0722 | .2406
.2449
.2452
.2433
.2400
.2360
.2288
.2270
.2226 | 0046
0038
0055
0082
0097
0112
0115
0122 | .0002
.0022
.0005
0003
.0003
.0054
.0128
.0214 | | 84 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 12.02
13.88
15.74
17.45
19.35
21.24
23.14
25.02
26.78 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.657
-0.638
-0.611
-0.585
-0.540
-0.512
-0.493
-0.471
-0.452 | 0782
0837
0905
0932
0975
0926
0873
0854
0865 | 0535
0397
0235
0102
.0003
.0192
.0373
.0535 | .3299
.3275
.3233
.3177
.3066
.2943
.2843
.2741 | 0056
0055
0049
0040
0055
0045
0024
0011
0006 | 0158
0113
0064
0030
.0006
.0075
.0162
.0253
.0332 | | Run | 11 | α | β | c_{χ} | c_{Z} | C_{Y} | C _m | $C_{\mathbf{n}}$ | C. | |-----|----------------|----------------|----------------|------------------|--------------|----------------|----------------|------------------|---------------| | 85 | 0.60
0.60 | 17.00
17.00 | -3.87
-2.07 | -0.439
-0.434 | 1163
1095 | .0227 | .1728
.1730 | 0078
0093 | .0046
0035 | | | 0.60 | 17.00 | -0.17 | -0.415 | 1139 | 0485 | .1704 | 0137 | 0153 | | | 0.60 | 17.00 | 1.74 | -0.381 | 1125 | 0716 | .1636 | 0105 | 0219 | | | 0.60 | 17.00 | 3.64 | -0.389 | 1171 | 1010 | .1716 | 0074 | 0306 | | | 0.60 | 17.00 | 5.55 | -0.389 | 1178 | 1308 | .1739 | 0083 | 0367 | | | 0.60 | 17.00 | 7.45 | -0.367 | 1112 | 1550 | .1709 | 0117 | 0484 | | | 0.60 | 17.00 | 9.32 | -0.359 | 1152 | 1934 | .1712 | 0128 | 0618 | | | | | | | | | | | | | 86 | 0.90 | 17.00 | -4.02 | -0.613 | 1009 | .0158 | .2509 | 0091 | .0033 | | | 0.90 | 17.00 | -2.16 | -0.576 | 1048 | 0007 | . 2459 | 0080 | .0002 | | | 0.90 | 17.00 | -0.45 | -0.542 | 1086 | 0286 | .2407 | 0091 | 0079 | | | 0.90
0.90 | 17.00
17.00 | 1.47 | -0.510 | 1162
1216 | 0777 | .2401 | 0109
0143 | 0213
0363 | | | 0.90 | 17.00 | 3.36
5.27 | -0.522
-0.522 | 1216 | 1287
1690 | .2512
.2596 | 0143 | 0303 | | | 0.90 | 17.00 | 7.17 | -0.322 | 1387 | 2300 | .2626 | 0262 | 0648 | | | 0.90 | 17.00 | 9.05 | -0.485 | 1384 | 2822 | .2545 | 0299 | 0801 | | | | | | | | | | | | | 87 | 1.50 | 17.00 | -4.07 | -0.598 | 0903 | .0514 | .3141 | .0014 | .0216 | | 0, | 1.50 | 17.00 | -2.21 | -0.601 | 0921 | .0135 | .3183 | 0023 | .0068 | | | 1.50 | 17.00 | -0.50 | -0.590 | 0943 | 0156 | .3195 | 0044 | 0048 | | | 1.50 | 17.00 | 1.22 | -0.580 | 0898 | 0587 | .3178 | 0057 | 0199 | | | 1.50 | 17.00 | 3.03 | -0.578 | 0883 | 0929 | .3165 | 0090 | 0310 | | | 1.50 | 17.00 | 4.94 | -0.563 | 0893 | 1215 | .3157 | 0140 | 0453 | | | 1.50 | 17.00 | 6.83 | -0.548 | 0905 | 1521 | .3128 | 0169 | 0626 | | | 1.50 | 17.00 | 8.69 | -0.539 | 0893 | 1872 | .3061 | 0167 | 0792 | | | | | | | | | | | | | 88 | 0.60 | 11.97 | 0.00 | -0.841 | 1467 | 0693 | .1460 | 0177 | 0113 | | | 0.60 | 13.79 | 0.00 | -0.825 | 1561 | 0574 | .1462 | 0124 | 0118 | | | 0.60 | 15.58 | 0.00 | -0.816 | 1580 | 0340 | .1487 | 0082 | 0074 | | | 0.60 | 17.53 | 0.00 | -0.807 | 1619 | 0086 | .1515 | 0016 | 0061 | | | $0.60 \\ 0.60$ | 19.46
21.38 | 0.00 | -0.798
-0.785 | 1659
1638 | .0057
.0212 | .1523 | .0004 | 0068
0089 | | | 0.60 | 23.31 | 0.00 | -0.782 | 1536 | .0365 | .1493 | .0119 | 0126 | | | 0.60 | 25.22 | 0.00 | -0.766 | 1470 | .0370 | .1488 | .0142 | 0206 | | Run | M | α | β | c_{χ} | c_{z} | c_{γ} | C _m | C | C ₂ | |-----|----------------|-------|-------|------------------|---------|---------------|----------------|----------------|----------------| | 89 | 0 00 | 12.24 | | | | | | | | | 09 | 0.90
0.90 | 12.24 | 0.00 | | | 0470 | .2165 | 0065 | 0098 | | | 0.90 | 14.06 | 0.00 | | | 0356 | . 2193 | 0007 | 0134 | | | 0.90 | 15.85 | 0.00 | | 1448 | 0113 | .2225 | .0062 | 0148 | | | 0.90 | 17.72 | 0.00 | | 1456 | .0272 | .2271 | .0135 | 0005 | | | 0.90 | 19.52 | 0.00 | | 1427 | .0600 | .2312 | .0174 | 0028 | | | 0.90 | 21.42 | 0.00 | | 1379 | .0661 | . 2328 | .0207 | 0077 | | | 0.90 | 23.33 | 0.00 | | 1305 | .0717 | . 2317 | .0247 | 0112 | | | 0.90 | 25.25 | 0.00 | | 1312 | .0935 | .2355 | .0321 | 0191 | | | 0.90 | 26.96 | 0.00 | -0.939 | 1278 | .1146 | .2363 | .0377 | 0174 | | 90 | 1.50 | 12.10 | 0.00 | .1 172 | 0074 | 0.40= | | | | | | 1.50 | 13.93 | 0.00 | -1.172 |
0974 | 0697 | .2885 | 0193 | 0032 | | | 1.50 | 15.77 | 0.00 | -1.135
-1.099 | 1088 | 0599 | .2878 | 0154 | 0053 | | | 1.50 | 17.67 | 0.00 | -1.058 | 1164 | 0414 | .2865 | 0100 | 0063 | | | 1.50 | 19.54 | 0.00 | | 1215 | 0132 | . 2857 | 0031 | 0055 | | | 1.50 | 21.41 | 0.00 | -1.016
-0.981 | 1248 | .0171 | .2843 | .0050 | 0033 | | | 1.50 | 23.28 | 0.00 | -0.950 | 1230 | .0447 | .2823 | .0113 | .0001 | | | 1.50 | 25.12 | 0.00 | -0.930 | 1219 | .0067 | .2816 | .0168 | . 0036 | | | 1.50 | 26.90 | 0.00 | -0.930 | 1154 | .0906 | . 2868 | .0232 | .0047 | | | 1100 | 20.00 | 0.00 | -0.917 | 1087 | .1152 | . 3003 | . 0294 | .0061 | | 91 | 0.60 | 17.00 | -4.04 | -0.811 | 1660 | 0607 | 1475 | | | | | 0.60 | 17.00 | -2.17 | -0.807 | 1600 | .0607 | .1475 | .0108 | 0254 | | | 0.60 | 17.00 | -0.44 | -0.807 | 1519 | .0251
0156 | .1477 | .0011 | 0109 | | | 0.60 | 17.00 | 1.27 | -0.803 | 1472 | 0156 | .1497 | 0082 | .0009 | | | 0.60 | 17.00 | 3.09 | -0.804 | 1482 | 0527 | .1479 | 0172 | .0141 | | | 0.60 | 17.00 | 5.00 | -0.813 | 1439 | 0518 | .1458 | 0238 | .0393 | | | 0.60 | 17.00 | 6.92 | -0.814 | 1336 | 0951 | .1465 | 0285 | .0659 | | | 0.60 | 17.00 | 8.83 | -0.826 | 1095 | 1814 | .1496 | 0399 | .0698 | | | | | | 0.020 | .1033 | 1014 | .1535 | 0583 | .0583 | | 92 | 0.90 | 17.00 | -4.10 | -1.051 | 1716 | .0711 | .2310 | 0244 | 0204 | | | 0.90 | 17.00 | -2.24 | -1.040 | 1520 | .0508 | .2310 | .0244 | 0204 | | | 0.90 | 17.00 | -0.50 | -1.028 | 1336 | .0017 | .2228 | .0181
.0048 | 0093 | | | 0.90 | 17.00 | 1.36 | -1.012 | 1249 | 1053 | .2228 | | 0086 | | | 0.90 | 17.00 | 3.26 | -1.034 | 1141 | 1051 | .2183 | 0187 | 0094 | | | 0.90 | 17.00 | | -1.055 | 1075 | 1586 | | 0284 | .0152 | | | 0.90 | 17.00 | 7.14 | -1.060 | 0914 | 2216 | .2232 | 0455 | .0261 | | | 0.90 | 17.00 | | -1.074 | 0924 | 3114 | .2275 | 0638 | .0342 | | | - - | J • • | 05 | 1.0/4 | . 0344 | 3114 | . 2331 | 0863 | .0290 | | Run | M | α | β | c_{X} | c_{Z} | C_Y | C _m | $^{\rm C}_{ m n}$ | C ₂ | |-----|--------------|----------------|----------------|------------------|--------------|--------------|----------------|-------------------|----------------| | 0~ | | .= | | | | | | | | | 93 | 1.50 | 17.00
17.00 | -4.09 | -1.099 | 1430 | .1099 | . 3055 | .0181 | .0110 | | | 1.50
1.50 | 17.00 | -2.16
-0.37 | -1.085 | 1275 | .0498 | .2925 | .0062 | .0066 | | | 1.50 | 17.00 | 1.43 | -1.076
-1.090 | 1149
1090 | 0222 | . 2844 | 0058 | 0052 | | | 1.50 | 17.00 | 3.22 | -1.106 | 1021 | 1096
1841 | . 2859 | 0228 | 0128 | | | 1.50 | 17.00 | 5.01 | -1.113 | 1021 | 2610 | .2911 | 0401 | 0167 | | | 1.50 | 17.00 | 7.00 | -1.094 | 0945 | 3593 | .2976 | 0591
0784 | 0248 | | | 1.50 | 17.00 | 8.99 | -1.091 | 0870 | 4816 | .3001 | 1066 | 0450
0654 | | | | | | 20001 | 10070 | . 7010 | .3001 | 1000 | 0034 | | 94 | 0.60 | 11.93 | 0.00 | -0.902 | .0898 | 0218 | .0292 | 0092 | .0076 | | | 0.60 | 13.81 | 0.00 | -0.886 | .0653 | 0158 | .0312 | 0074 | .0075 | | | 0.60 | 15.60 | 0.00 | -0.876 | .0416 | 0067 | .0336 | 0077 | .0112 | | | 0.60 | 17.43 | 0.00 | -0.869 | .0192 | 0018 | .0335 | 0109 | .0111 | | | 0.60 | 19.36 | 0.00 | -0.860 | 0010 | .0015 | .0338 | 0107 | .0093 | | | 0.60 | 21.28 | 0.00 | -0.839 | 0195 | .0029 | .0352 | 0093 | .0078 | | | 0.60 | 23.21 | 0.00 | -0.820 | 0368 | 0051 | .0371 | 0103 | 0017 | | | 0.60 | 25.12 | 0.00 | -0.806 | 0544 | .0162 | .0419 | 0035 | .0027 | | | €.50 | 26.87 | 0.00 | -0.790 | 0620 | .0246 | .0430 | 0011 | .0060 | | | | | | | | | | | | | 95 | 0.90 | 11.88 | 0.00 | -1.215 | .1220 | 0294 | .0780 | 0149 | .0064 | | | 0.90 | 13.87 | 0.00 | -1.211 | .1059 | 0233 | .0804 | 0128 | .0035 | | | 0.90 | 15.66 | 0.00 | -1.203 | .0849 | 0156 | .0856 | 0102 | .0049 | | | 0.90 | 17.60 | 0.00 | -1.186 | .0647 | 0090 | .0880 | 0085 | .0040 | | | 0.90 | 19.53 | 0.00 | -1.159 | .0448 | 0060 | .0903 | 0079 | .0033 | | | 0.90 | 21.46 | 0.00 | -1.136 | .0150 | .0001 | .0945 | 0075 | .0015 | | | 0.90 | 23.39 | 0.00 | -1.116 | 0071 | .0094 | .0989 | 0048 | .0012 | | | 0.90 | 25.30 | 0.00 | -1.090 | 0295 | .0202 | .1024 | 0030 | 0002 | | | | | | | | | | | | | 96 | 1.50 | 11.94 | 0.00 | -1.373 | .0216 | 0445 | .2020 | 0147 | 0021 | | | 1.50 | 13.80 | 0.00 | -1.344 | .0016 | 0328 | . 2060 | 0119 | 0005 | | | 1.50 | 15.66 | 0.00 | -1.312 | 0184 | 0262 | .2080 | 0102 | 0014 | | | 1.50 | 17.55 | 0.00 | -1.278 | 0368 | 0174 | . 2097 | -,0083 | 0013 | | | 1.50 | 19.43 | 0.00 | -1.239 | 0552 | 0105 | . 2088 | 0068 | 0013 | | | 1.50 | 21.31 | 0,00 | -1.198 | 0754 | 0035 | .2073 | 0056 | 0018 | | | 1.50 | 23.21 | 0.00 | -1.148 | 1011 | .0040 | . 2044 | 0042 | 0022 | | | 1.50 | 25.05 | 0.00 | -1.099 | 1278 | .0135 | .2008 | 0026 | 0020 | | | 1.50 | 26.86 | 0.00 | -1.052 | 1561 | .0228 | .1980 | 0006 | 0017 | | Run | M | α | β | c_{χ} | $C_{\overline{Z}}$ | C_Y | C _m | C _n | C. | |-----|--|--|---|--|--|--|---|--|--| | 9~ | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.02
-2.16
-0.35
1.37
3.17
5.05
6.85
8.73 | -0.877
-0.877 | .0290
.0282
.0337
.0285
.0311
.0316
.0297
.0246 | .0684
.0281
0079
0560
0980
1256
1001
1057 | .0375
.0351
.0340
.0334
.0320
.0339
.0394 | .0136
0005
0093
0238
0364
0432
0443 | 0030
.0064
.0149
.0154
.0206
.0285
.0548 | | 98 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.09
-2.21
-0.39
1.35
3.17
5.10
7.02
8.91 | -1.170
-1.177
-1.187
-1.177
-1.165
-1.163
-1.163 | .0499
.0608
.0722
.0716
.0741
.0660
.0547 | .0846
.0338
0196
0735
1236
1816
2231
2536 | .0914
.0876
.0852
.0870
.0895
. 095 8
.1045
.1098 | .0179
.0009
0117
0250
0409
0596
0741
0883 | 0017
.0027
.0013
.0068
.0118
.0159
.0349 | | 99 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.10
-2.16
-0.37
1.42
3.19
5.07
7.04
9.00 | -1.312
-1.299
-1.291
-1.297
-1.302
-1.305
-1.297
-1.284 | 0550
0390
0295
0284
0312
0358
0449
0570 | .1052
.0423
0181
0858
1498
2226
2973
3814 | . 2245
. 2150
. 2088
. 2126
. 2171
. 2222
. 2281
. 2355 | .0156
.0029
0085
0209
0345
0511
0701
0907 | .0027
.0017
0007
0061
0069
0089
0108
0189 | | 100 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.01
13.84
15.63
17.39
19.34
21.27
23.22
25.15 | | -0.903
-0.891
-0.880
-0.874
-0.854
-0.844
-0.822
-0.811 | .1064
.0881
.0664
.0474
.0219
.0058
0165 | 0191
0124
0057
0031
.0032
.0063
.0060 | .0269
.0277
.0292
.0303
.0295
.0308
.0315 | 0088
0075
0064
0073
0100
0094
0084
0048 | .0069
.0076
.0085
.0074
.0107
.0055
.0050 | | Run | M | α | β | c_{χ} | c _Z | c_{Y} | C _m | C _n | C. | |-----|--|---|---|--|--|---|--|--|--| | 101 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.91
13.75
15.61
17.33
19.14
21.04
22.94
24.83
26.63 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -1.213
-1.197
-1.189
-1.177
-1.159
-1.138
-1.121
-1.090
-1.069 | .1370
.1196
.1028
.0850
.0689
.0426
.0218
0005 | 0178
0229
0179
0126
0087
.0037
.0155
.0236 | .0693
.0712
.0747
.0776
.0791
.0827
.0884
.0899 | 0128
0117
0099
0089
0081
0074
0047
0024
0009 | .0088
.0066
.0031
.0030
.0034
.0001
.0028
.0013 | | 102 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 11.98
13.91
15.80
17.71
19.60
21.52
23.42
25.29 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.333
-1.307
-1.267
-1.230
-1.189
-1.145
-1.100
-1.060 | .0010
0209
0463
0698
0960
1258
1521
1819 | 0410
0348
0272
0208
0146
0038
.0039
.0068 | .2042
.2093
.2113
.2132
.2136
.2135
.2108
.2043 | 0136
0119
0100
0085
0071
0055
0041
0037 | 0012
0010
0002
0002
.0000
.0003
.0013 | | 103 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -3.95
-2.15
-0.41
1.35
3.08
4.83
6.76
8.67 | -0.872
-0.876
-0.871
-0.869
-0.875
-0.872
-0.881 |
.0437
.0454
.0526
.0510
.0433
.0472
.0483
.0399 | .0641
.0291
0034
0545
0887
1227
1105
1099 | .0346
.0327
.0313
.0291
.0293
.0292
.0325
.0446 | .0146
.0002
0081
0189
0331
0424
0439
0508 | 0052
.0061
.0119
.0117
.0207
.0251
.0532 | | 104 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.04
-2.15
-0.32
1.62
3.54
5.47
7.39
9.28 | -1.179
-1.180
-1.168
-1.170
-1.163
-1.162
-1.162
-1.157 | .0689
.0802
.0911
.0925
.0905
.0862
.0843 | .0903
.0358
0248
0770
1367
1917
2378
2861 | .0819
.0776
.0748
.0762
.0809
.0862
.0929 | .0208
.0034
0117
0279
0451
0631
0788
0962 | 0006
.0037
.0022
.0082
.0121
.0218
.0360
.0508 | | Run | М | α | β | c _x | c_{Z} | c_{Y} | C _m | C _n | c ₂ | |-----|------|-------|-------|----------------|---------|---------|----------------|----------------|----------------| | 105 | 1.50 | 17.00 | -3.96 | -1.276 | 0759 | .1112 | .2245 | .0192 | .0006 | | 100 | 1.50 | 17.00 | -2.11 | -1.259 | 0667 | .0424 | .2174 | .0038 | .0005 | | | 1.50 | 17.00 | -0.35 | -1.246 | 0593 | 0216 | .2125 | 0093 | 0004 | | | 1.50 | 17.00 | 1.42 | ' -1.253 | 0572 | 0967 | .2158 | 0223 | 0013 | | | 1.50 | 17.00 | 3.38 | -1.265 | 0570 | 1764 | .2199 | 0419 | 0052 | | | 1.50 | 17.00 | 5.34 | -1.264 | 0645 | 2566 | .2235 | 0603 | 0077 | | | 1.50 | 17.00 | 7.30 | -1.256 | 0770 | 3428 | . 2238 | 0814 | 0128 | | | 1.50 | 17.00 | 9.24 | -1.238 | 0865 | 4345 | .2327 | 1032 | 0259 | | | | | | | | | | | | | 106 | 0.60 | 12.05 | 0.00 | -0.875 | .1005 | 0187 | .0263 | 0078 | .0091 | | | 0.60 | 13.92 | 0.00 | -0.870 | .0794 | 0156 | .0277 | 0072 | .0070 | | | 0.60 | 15.70 | 0.00 | -0.853 | .0519 | 0072 | .0311 | 0058 | .0094 | | | 0.60 | 17.45 | 0.00 | -0.842 | .0255 | 0043 | .0327 | 0084 | .0091 | | | 0.60 | 19.18 | 0.00 | -0.834 | .0061 | 0024 | .0331 | 0102 | .0095 | | | 0.60 | 20.91 | 0.00 | -0.817 | 0150 | 0036 | .0342 | 0091 | .0086 | | | 0.60 | 22.74 | 0.00 | -0.795 | 0366 | 0007 | .0365 | 0096 | .0014 | | | 0.60 | 24.65 | 0.00 | -0.781 | 0535 | .0064 | .0425 | 0057 | .0036 | | | 0.60 | 26.46 | 0.00 | -0.754 | 0697 | .0107 | .0430 | 0054 | .0067 | | | | | | | | | | | | | 107 | 0.90 | 11.89 | 0.00 | -1.191 | .1419 | 0260 | .0667 | 0131 | .0038 | | | 0.90 | 13.80 | 0.00 | -1.183 | .1224 | 0221 | .0695 | 0116 | .0036 | | | 0.90 | 15.67 | 0.00 | -1.169 | .0990 | 0160 | .0738 | 0099 | .0037 | | | 0.90 | 17.59 | 0.00 | -1.160 | .0713 | 0138 | .0800 | 0096 | .0030 | | | 0.90 | 19.50 | 0.00 | -1.136 | .0482 | 0125 | .0820 | 0084 | .0032 | | | 0.90 | 21.40 | 0.00 | -1.108 | .0192 | 0052 | .0876 | 0088 | .0031 | | | 0.90 | 23.32 | 0.00 | -1.085 | 0071 | .0022 | .0941 | 0060 | .0042 | | | 0.90 | 25.22 | 0.00 | -1.053 | 0339 | .0048 | .0976 | 0049 | .0044 | | | | | | | | | | | | | 103 | 1.50 | 11.96 | 0.00 | -1.392 | 0010 | 0453 | .2096 | 0154 | 0007 | | | 1.50 | 13.78 | 0.00 | -1.361 | 0256 | 0408 | .2143 | 0141 | .0000 | | | 1.50 | 15.66 | 0.00 | -1.326 | 0531 | 0378 | .2175 | 0124 | 0023 | | | 1.50 | 17.48 | 0.00 | -1.292 | 0783 | 0338 | .2196 | 0116 | 0026 | | | 1.50 | 19.30 | 0.0υ | -1.259 | 1026 | 0291 | .2210 | 0112 | 0020 | | | 1.50 | 21.10 | 0.00 | -1.221 | 1286 | 0246 | .2198 | 0106 | 0018 | | | 1.50 | 23.01 | 0.00 | -1.178 | 1551 | 0216 | .2161 | 0100 | 0019 | | | 1.50 | 24.89 | 0.00 | -1.138 | 1760 | 0173 | .2105 | 0091 | 0011 | | | 1.50 | 26.68 | 0.00 | -1.094 | 1952 | 0123 | . 2043 | 0080 | 0004 | | Run | М | α | β | C_{χ} | c_{z} | c_{Y} | $C_{\mathbf{m}}$ | $C_{\mathbf{n}}$ | C ₂ | |-----|------|-------|-------|------------|---------|---------|------------------|------------------|----------------| | | | | | | | | | | | | 109 | 0.60 | 17.00 | -4.00 | -0.849 | .0306 | .0586 | .0355 | .0139 | 0027 | | | 0.60 | 17.00 | -2.20 | -0.856 | .0304 | .0337 | .0341 | .0014 | .0078 | | | 0.60 | 17.00 | -0.46 | -0.854 | .0325 | 0040 | .0339 | 0100 | .0139 | | | 0.60 | 17.00 | 1.39 | -0.856 | .0270 | 0507 | .0335 | 0219 | .0139 | | | 0.60 | 17.00 | 3.31 | -0.853 | .0253 | 0865 | .0322 | 0324 | .0199 | | | 0.60 | 17.00 | 5.22 | -0.848 | .0213 | 1230 | .0335 | 0433 | .0264 | | | 0.60 | 17.00 | 7.11 | -0.851 | .0287 | 1035 | .0371 | 0410 | .0489 | | | 0.60 | 17.00 | 9.00 | -0.351 | .0228 | 0921 | .0436 | 0431 | .0703 | | | | | | | | | | | | | 110 | 0.90 | 17.00 | -4.00 | -1.151 | .0664 | .0799 | .0802 | .0162 | .0025 | | | 0.90 | 17.00 | -2.17 | -1.154 | .0719 | .0291 | .0784 | .0012 | .0033 | | | 0.90 | 17.00 | -0.40 | -1.152 | .0819 | 0150 | .0764 | 0106 | .0023 | | | 0.90 | 17.00 | 1.37 | -1.149 | .0834 | 0639 | .0770 | 0225 | .0045 | | | 0.90 | 17.00 | 3.13 | -1.141 | .0808 | 1057 | .0806 | 0361 | .0107 | | | 0.90 | 17.00 | 4.99 | -1.129 | .0765 | 1588 | .0840 | 0521 | .0137 | | | 0.90 | 17.00 | 6.96 | -1.122 | .0665 | 2091 | .0901 | 0685 | .0228 | | | 0.90 | 17.00 | 8.89 | -1.123 | .0622 | 2330 | .0984 | 0797 | .0440 | 111 | 1.50 | 17.00 | -3.88 | -1.321 | 0378 | .0953 | .2282 | .0118 | .0073 | | | 1.50 | 17.00 | -2.01 | -1.311 | 0753 | .0319 | .2214 | 0006 | .0051 | | | 1.50 | 17.00 | -0.11 | -1.307 | 0701 | 0395 | .2195 | 0128 | 0029 | | | 1.50 | 17.00 | 1.86 | -1.315 | 0746 | 1172 | .2247 | 0268 | 0093 | | | 1.50 | 17.00 | 3.85 | -1.321 | 0867 | 1984 | .2311 | 0437 | 0136 | | | 1.50 | 17.00 | 5.84 | -1.323 | 0919 | 2709 | .2335 | 0613 | 0140 | | | 1.50 | 17.00 | 7.31 | -1.322 | 0918 | 3497 | .2348 | 0825 | 0187 | | | 1.50 | 17.00 | 9.73 | -1.312 | 0948 | 4316 | .2376 | 1023 | 0293 | | | | | | | | | | | | | 112 | 0.60 | 11.95 | 0.00 | -0.881 | .1071 | 0238 | .0256 | 0093 | .0062 | | | 0.60 | 13.77 | 0.00 | -0.872 | .0865 | 0179 | .0275 | 0068 | .0059 | | | 0.60 | 15.56 | 0.00 | -0.854 | .0633 | 0053 | .0305 | 0056 | .0079 | | | 0.60 | 17.30 | 0.00 | -0.840 | .0377 | .0000 | .0318 | 0054 | .0106 | | | 0.60 | 19.04 | 0.00 | -0.833 | .0116 | 0041 | .0317 | 0101 | .0092 | | | 0.60 | 20.76 | 0.00 | -0.812 | 0121 | .0034 | .0316 | 0105 | .0094 | | | 0.60 | 22.49 | 0.00 | -0.802 | 0265 | .0023 | .0322 | 0093 | .0031 | | | 0.60 | 24.21 | 0.00 | -0.789 | 0435 | 0001 | .0385 | 0076 | .0029 | | | 0.60 | 26.01 | 0.00 | -0.765 | 0639 | .0129 | .0416 | 0037 | .0052 | | Run | M | α | β | $^{\text{C}}\chi$ | c_{z} | $c_{\mathbf{Y}}$ | C _m | c _n | C ₂ | |-----|--------------|----------------|--------------|-------------------|--------------|------------------|----------------|----------------|----------------| | 113 | 0.90 | 11.88 | 0.00 | -1.173 | .1508 | 0067 | 0601 | 21.24 | | | | 0.90 | 13.84 | 0.00 | -1.160 | .1308 | 0067
0166 | .0601 | 0104 | .0106 | | | 0.90 | 15,63 | 0.00 | -1.159 | .1084 | 0160 | .0634 | 0113 | .0048 | | | 0.90 | 17.56 | 0.00 | -1.143 | .0845 | 0139 | .0727 | 0098
0095 | .0050 | | | 0.90 | 19.48 | 0.00 | -1.121 | .0632 | 0098 | .0756 | 0088 | .0022 | | | 0.90 | 21.40 | 0.00 | -1.101 | .0377 | .0063 | .0822 | 0070 | .0012 | | | 0.90 | 23.33 | 0.00 | -1.076 | .0091 | .0053 | .0865 | 0052 | .0059 | | | 0.90 | 25.23 | 0.00 | -1.052 | 0179 | .0082 | .0911 | 0047 | .0060 | | 114 | | | | | | | | | | | 114 | 1.50 | 11.97 | 0.00 | -1.401 | .0140 | 0384 | .2093 | 0145 | .0005 | | | 1.50 | 13.85 | 0.00 | -1.369 | 0097 | 0356 | .2128 | 0132 | 0015 | | | 1.50 | 15.73 | 0.00 | -1.335 | 0322 | ~.0303 | .2143 | 0112 | 0023 | | | 1.50
1.50 | 17.54
19.43 | 0.00 | -1.304 | 0533 | 0257 | .2153 | 0105 | 0024 | | | 1.50 | 21.32 | 0.00
0.00 | -1.267 | 0735 | 0193 | .2141 | 0094 | 0021 | | | 1.50 | 23.13 | 0.00 | -1.223
-1.175 | 0908 | 0143 | .2100 | 0083 | 0015 | | | 1.50 | 25.13 | 0.00 | -1.175 | 1063
1206 | 0091 | .2043 | 0075 | 0002 | | | 1.50 | 26.79 | 0.00 | -1.127 | 1373 | 0039 | .1972 | 0070 | .0003 | | | | 25.75 | 0.00 | 1.077 | ~.13/3 | .0015 | .1908 | 0060 | .0009 | | 115 | 0.60 | 17.00 | -3.93 | -0.849 | .0397 | .0594 | .0351 | ,0133 | 0024 | | | 0.60 | 17.00 | -2.12 | -0.853 | .0441 | .0247 | .0326 | ,0019 | 0024 | | | 0.60 | 17.00 | -0.18 | -0.846 | .0427 | 0058 | .0310 | 0071 | .0069
.0150 | | | 0.60 | 17.00 | 1.76 | -0.851 | .0471 | 0569 | .0286 | 0197 | .0130 | | | 0.60 | 17.00 | 3.69 | -0.850 | .0332 | 0951 | .0307 | 0355 | .0203 | | | 0.60 | 17.00 | 5. 63 | -0.847 | .0413 | 1224 | .0290 | 0418 | .0242 | | | 0.60 | 17.00 | 7.55 | -0.847 | .0371 | 0971 | .0346 | 0426 | .0540 | | | 0.60 | 17.00 | 9.42 | -0.848 | .0340 | 1036 | .0425 | 0469 | .0725 | | 117 | | | | | | | | | | | 116 | 0.90 | 17.00 | -4.05 | -1.141 | .0756 | .0795 | .0749 | .0168 | .0000 | | | 0.90 | 17.00 | -2.16 | -1.146 | .0850 | .0309 | .0718 | .0018 | .0038 | | | 0.90
0.90 | 17.00 | -0.42 | -1.141 | .0917 | 0197 | .0708 | 0104 | .0029 | | | 0.90 | 17.00
17.00 | 1.41 | -1.135 | .0920 | 0588 | .0718 | 0227 | .0065 | | | 0.90 | 17.00 | 3.33 | -1.130 | .0921 | 1097 | .0749 | 0382 | .0134 | | | 0.90 | 17.00 | 5.26
7.19 | -1.122 | .0845 | 1683 | .0792 | 0548 | .0128 | | | 0.90 | 17.00 | 9.09 | -1.113
-1.109 | .0816 | 2066 | .0833 | 0694 | .0250 | | | 50 | 17,00 | 3.03 | -1.103 | .0769 | 2395 | .0903 | 0823 | .0438 | | Run | M | α | β | c_{χ} | c_{z} | \mathbf{c}_{Y} | C _m | c _n | C ₂ | |-----|--|---|---|--|--|--|---|--|--
 | 117 | 1.50
1.50
1.50
1.50
1.50 | 17.00
17.00
17.00
17.00
17.00
17.00 | -3.95
-2.10
-0.33
1.44
3.40
5.36 | -1.341
-1.324
-1.320
-1.327
-1.337
-1.339 | 0611
0509
0461
0477
0509
0542 | .1058
.0415
0241
0913
1683
2396 | .2263
.2180
.2158
.2191
.2250
.2272 | .0151
.0016
0103
0220
0377
0546 | .0071
.0045
0020
0077
0127 | | | 1,50
1,50 | 17.00
17.00 | 7.32
9.24 | -1.335
-1.320 | 0555
0647 | 3048
3816 | .2310 | 0725
0918 | 0136
02 2 5 | | 118 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.02
13.84
15.70
17.44
19.35
21.26
23.19
25.09
26.86 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.872
-0.858
-0.844
-0.824
-0.816
-0.799
-0.782
-0.763
-0.749 | .1202
.1011
.0751
.0512
.0286
.0047
0206
0405
0530 | 0160
0102
0083
0066
.0014
.0045
0022
.0020 | .0222
.0239
.0255
.0278
.0287
.0277
.0300
.0348
.0389 | 0087
0075
0060
0051
0058
0079
0098
0065
0026 | .0066
.0072
.0093
.0078
.0079
.0064
.0016
.0011 | | 119 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.94
13.80
15.66
17.39
19.19
21.00
22.72
24.62
26.42 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.111
-1.113
-1.107
-1.092
-1.086
-1.077
-1.059
-1.034
-1.006 | .1601
.1436
.1263
.1067
.0885
.0682
.0428
.0138 | 0148
0144
0074
0082
0063
.0091
.0115
.0102
.0087 | .0489
.0523
.0569
.0600
.0634
.0694
.0741
.0792
.0806 | 0109
0095
0085
0081
0071
0050
0049
0046
0043 | .0082
.0092
.0080
.0011
.0032
.0075
.0057
.0058 | | 120 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 12.24
14.06
15.79
17.55
19.30
21.04
22.99
24.90
26.72 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.349
-1.324
-1.288
-1.254
-1.216
-1.179
-1.139
-1.098
-1.058 | .011801260378063809141190146117872132 | 0326
0301
0254
0226
0182
0153
0129
0092
0062 | .2019
.2077
.2108
.2134
.2145
.2129
.2030
.1938 | 0117
0109
0097
0094
0086
0082
0083
0077
0079 | 0015
0016
0003
0001
.0002
.0004
.0008
.0014 | | Run | M | α | β | c_{χ} | C _Z | C _Y | C _m | C _n | С | |-----|------|-------|-------|------------|----------------|----------------|----------------|----------------|-------| | 121 | 0.60 | 17.00 | -3.94 | -0.844 | .0518 | .0557 | 0727 | 0170 | 0057 | | | 0.60 | 17.00 | -2.10 | -0.839 | .0538 | | .0323 | .0139 | 0053 | | | 0.60 | 17.00 | -0.17 | -0.834 | .0565 | | | .0042 | .0076 | | | 0.60 | 17.00 | 1.74 | -0.838 | .0567 | | .0277
.0261 | 0074 | .0110 | | | 0.60 | 17.00 | 3.65 | -0.832 | .0465 | | | 0192 | .0129 | | | 0.60 | 17.00 | 5.58 | -0.833 | .0549 | 1138 | .0276 | 0349 | .0228 | | | 0.60 | 17.00 | 7.50 | -0.833 | .0503 | | .0253 | 0408 | .0266 | | | 0.60 | 17.00 | 9.37 | -0.834 | .0384 | 1038 | .0319 | 0435 | .0512 | | | | | 2,07 | 0.054 | .0304 | 1036 | .0405 | 0479 | .0731 | | | | | | | | | | | • | | 122 | 0.90 | 17.00 | -4.04 | -1.091 | .0925 | .0759 | .0615 | .0149 | .0000 | | | 0.90 | 17.00 | -2.31 | -1.097 | .0999 | .0314 | .0608 | .0024 | .0048 | | | 0.90 | 17.00 | -0.35 | -1.097 | .1081 | 0161 | .0597 | 0092 | .0042 | | | 0.90 | 17.00 | 1.59 | -1.089 | .1123 | 0563 | .0599 | 0222 | .0098 | | | 0.90 | 17.00 | 3.51 | -1.093 | .1092 | 1078 | .0643 | 0376 | .0135 | | | 0.90 | 17.00 | 5.45 | -1.086 | .1024 | 1557 | .0695 | 0534 | .0177 | | | 0.90 | 17.00 | 7.41 | -1.076 | .0909 | 2059 | .0753 | 0686 | .0280 | | | 0.90 | 17.00 | 9.32 | -1.065 | .0886 | 2380 | .0784 | 0822 | .0422 | | | | | | | | | | | | | 123 | 1.50 | 17.00 | -3.99 | -1.297 | 0626 | .1087 | .2227 | .0188 | .0015 | | | 1.50 | 17.00 | -2.14 | -1.283 | 0551 | .0451 | .2174 | .0040 | .0010 | | | 1.50 | 17.00 | -0.39 | -1.267 | 0517 | 0162 | .2129 | 0082 | .0000 | | | 1.50 | 17.00 | 1.37 | -1.270 | 0552 | 0880 | .2166 | 0216 | 0049 | | | 1.50 | 17.00 | 3.21 | -1.281 | 0545 | 1554 | .2196 | 0372 | 0057 | | | 1.50 | 17.00 | 4.97 | -1.286 | 0615 | 2241 | .2230 | 0524 | 0074 | | | 1.50 | 17.00 | 6.81 | -1.284 | 0748 | 2942 | .2280 | 0701 | 0100 | | | 1.50 | 17.00 | 8.73 | -1.277 | 0807 | 3777 | .2314 | 0901 | 0188 | | | | | | | | | | | | | 124 | 0.60 | 11.92 | 0.00 | -0.853 | .1082 | 0323 | .0252 | 0101 | 0026 | | | 0.60 | 13.81 | 0.00 | -0.839 | .0821 | 0250 | .0232 | 0101
0084 | .0026 | | | 0.60 | 15.63 | 0.00 | -0.826 | .0567 | 0184 | | | .0043 | | | 0.60 | 17.38 | 0.00 | -0.817 | .0199 | 0184 | .0298 | 0073 | .0055 | | | 0.60 | 19.30 | 0.00 | -0.802 | 0113 | 0152 | .0354 | 0107 | .0110 | | | 0.60 | 21.23 | 0.00 | -0.787 | 0409 | 0106 | .0391 | 0114 | .0092 | | | 0.60 | 23.16 | 0.00 | -0.771 | 0611 | 0108 | .0391 | 0111 | .0066 | | | 0.60 | 25.07 | | -0.749 | 0788 | 0108 | .0449 | 0094 | .0006 | | | 0.60 | 26.84 | | -0.714 | 0963 | .0073 | | 0065 | .0032 | | | - | | 0.00 | J./14 | 0503 | 10021 | .0478 | 0064 | .0046 | | Run | M | α | β | c_{χ} | c_{Z} | c_{Y} | C _m | c_n | C ₂ | |-----|--|---|--|--|--|--|---|--|---| | 125 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.78
13.67
15.47
17.22
19.04
20.96
22.90
24.81 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -1.119
-1.109
-1.092
-1.081
-1.071
-1.045
-1.019 | .1575
.1373
.1108
.0911
.0686
.0407
.0079 | 0274
0262
0218
0104
.0005
.0070
.0056 | .0544
.0585
.0609
.0650
.0711
.0754
.0816 | 0120
0116
0096
0083
0062
0047
0045 | .0051
.0028
.0041
.0033
.0057
.0077
.0076 | | 126 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 11.70
13.52
15.34
17.21
19.17
21.13
23.08
25.01
26.81 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.959 -1.382 -1.366 -1.345 -1.306 -1.227 -1.182 -1.134 -1.089 | 0566
.0521
.0256
0006
0312
0645
0982
1301
1617
1951 | 0036
0231
0231
0201
0173
0161
0141
0124
0142
0106 | .1927
.1992
.2047
.2064
.2083
.2078
.2061
.2033
.2004 | 0050
0097
0099
0096
0091
0085
0084
0082
0086
0078 | .0041
.0000
0009
0001
0003
0006
0003
.0000 | | 127 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -3.98
-2.18
-0.25
1.67
3.58
5.51
7.41
9.29 | -0.817
-0.820
-0.816
-0.823
-0.820
-0.797
-0.796
-0.795 | .0350
.0363
.0294
.0205
.0176
.0173
.0114 | .0520
.0181
0089
0480
0782
1149
0952
1163 | .0298
.0315
.0327
.0342
.0354
.0330
.0384 | .0133
.0013
0091
0228
0318
0437
0459
0535 | .0010
.0004
.0123
.0155
.0203
.0288
.0576 | | 128 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.11
-2.24
-0.50
1.23
2.96
4.79
6.72
8.63 | -1.082
-1.093
-1.084
-1.085
-1.086
-1.061
-1.053 | .0890
.0988
.0968
.0994
.0964
.0965
.0860 | .0550
.0192
0152
0394
0703
1110
1493
1896 | .0673
.0661
.0651
.0642
.0679
.0702
.0731 | .0102
.0005
0082
0166
0270
0404
0524
0661 | 0058
.0009
.0014
.0097
.0159
.0188
.0249 | | Run | M | α | β | c _x | c_2 | c_{Y} | C _m | C_n | C ₂ | |-----|--|---|---|--|--|--|--|--|--| | 129 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.10
-2.22
-0.21
1.79
3.78
5.77
7.74
9.66 | -1.330
-1.320
-1.326
-1.329
-1.329
-1.327 | 0290
0233
0230
0249
0266
0316
0390
0434 | .0879
.0365
0214
0856
1462
2055
2612
3260 | .2118
.2092
.2061
.2093
.2106
.2124
.2146
.2175 | .0145
.0022
0099
0227
0354
0498
0641
0800 | .0011
.0015
.0000
0043
0015
0053
0053 | | 130 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 12.08
13.97
15.77
17.51
19.25
20.97
22.72
24.46
26.18 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 |
-0.154
-0.145
-0.130
-0.115
-0.105
-0.097
-0.092
-0.085
-0.079 | 1408
1343
1287
1226
1189
1167
1132
1110
1089 | 0119
0027
.0026
.0042
.0079
.0103
.0124
.0156 | .1263
.1190
.1091
.0983
.0915
.0871
.0829
.0790 | 0037
0023
0015
0009
.0000
.0004
.0012
.0017 | 0014
.0032
.0067
.0068
.0096
.0117
.0142
.0165
.0202 | | 131 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 11.96
13.79
15.87
17.78
19.48
21.29
23.11
24.81
26.64 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | -0.242
-0.229
-0.202
-0.177
-0.158
-0.148
-0.137
-0.128
-0.119 | 1353
1246
1164
1131
1113
1090
1122
1142
1158 | 0041
.0032
.0142
.0217
.0292
.0374
.0449
.0484 | .1881
.1768
.1571
.1412
.1287
.1224
.1159
.1105 | 0029
0020
.0001
.0023
.0044
.0060
.0063
.0066 | 0042
.0014
.0100
.0163
.0215
.0273
.0341
.0383
.0407 | | 132 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 12.10
14.00
15.78
17.51
19.24
20.98
22.70
24.42
26.31 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -0.177
-0.167
-0.149
-0.133
-0.120
-0.114
-0.109
-0.106
-0.100 | 0957
0905
0812
0743
0702
0684
0682
0680
0667 | 0219
0141
0057
.0024
.0105
.0163
.0217
.0262
.0314 | .1513
.1437
.1301
.1179
.1085
.1032
.0995
.0963 | 0032
0024
0015
0005
.0004
.0015
.0027
.0039 | 0122
0055
.0008
.0066
.0120
.0167
.0214
.0258
.0308 | | Run | M | α | β | c_{χ} | C_Z | C_{Y} | $C_{\mathfrak{m}}$ | c_n | C ₂ | |-----|------|-------|-------|------------|-------|---------|--------------------|-------|----------------| | 133 | 0.60 | 12.07 | 0.00 | -0.532 | 1405 | 0576 | . 2179 | 0037 | 0135 | | | 0.60 | 13.83 | 0.00 | -0.521 | 1377 | 0540 | .2158 | 0076 | 0158 | | | 0.60 | 15.65 | 0.00 | -0.505 | 1404 | 0467 | .2138 | 0093 | 0155 | | | 0.60 | 17.49 | 0.00 | -0.481 | 1463 | 0317 | .2109 | 0090 | 0102 | | | 0.60 | 19.21 | 0.00 | -0.462 | 1496 | 0180 | . 2056 | 0084 | 0046 | | | 0.60 | 20.93 | 0.00 | -0.439 | 1517 | 0020 | .1969 | 0072 | .0014 | | | 0.60 | 22.66 | 0.00 | -0.418 | 1514 | .0102 | .1880 | 0068 | .0067 | | | 0.60 | 24.40 | 0.00 | -0.391 | 1507 | .0221 | .1773 | 0071 | .0123 | | | 0.60 | 26.12 | 0.00 | -0.367 | 1485 | .0364 | .1672 | 0072 | .0180 | | | | | | | | | | | | | 134 | 0.90 | 12.01 | 0.00 | -0.671 | 1393 | 0752 | .3002 | 0105 | 0181 | | | 0.90 | 13.87 | 0.00 | -0.649 | 1376 | 0677 | .2974 | 0117 | 0188 | | | 0.90 | 15.68 | 0.00 | -0.622 | 1382 | 0545 | .2930 | 0135 | 0186 | | | 0.90 | 17.41 | 0.00 | -0.595 | 1466 | 0372 | .2894 | 0148 | 0148 | | | 0.90 | 19.14 | 0.00 | -0.567 | 1591 | 0151 | .2864 | 0160 | 0077 | | | 0.90 | 20.85 | 0.00 | -0.545 | 1648 | .0073 | .2791 | 0140 | .0018 | | | 0.90 | 22.59 | 0.00 | -0.523 | 1694 | .0297 | .2707 | 0122 | .0118 | | | 0.90 | 24.32 | 0.00 | -0.499 | 1758 | .0487 | .2627 | 0111 | .0207 | | | 0.90 | 26.03 | 0.00 | -0.472 | 1806 | .0681 | .2543 | 0101 | .0305 | | | | | | | | | | | | | 135 | 1.50 | 12.09 | 0.00 | -0.705 | 0722 | 1106 | .3540 | 0098 | 0444 | | | 1.50 | 13.90 | 0.00 | -0.673 | 0779 | 0787 | .3496 | 0070 | 0360 | | | 1.50 | 15.68 | 0.00 | -0.630 | 0891 | 0582 | .3424 | 0074 | 0288 | | | 1.50 | 17.40 | 0.00 | -0.589 | 0989 | 0414 | .3329 | 0082 | 0206 | | | 1.50 | 19.12 | 0.00 | -0.552 | 1043 | 0238 | .3209 | 0080 | 0136 | | | 1.50 | 20.84 | 0.00 | -0.533 | 1059 | 0089 | .3129 | 0072 | 0061 | | | 1.50 | 22.56 | 0.00 | -0.507 | 1020 | .0093 | .2980 | 0065 | .0020 | | | 1.50 | 24.28 | 0.00 | -0.487 | 0990 | .0266 | .2861 | 0048 | .0127 | | | 1.50 | 26.16 | 0.00 | -0.464 | 0979 | .0418 | .2713 | 0059 | .0231 | | | | | | | | | | | | | 136 | 0.60 | 17.00 | -3.99 | -0.486 | 1497 | .0290 | .2098 | 0070 | .0118 | | - | 0.60 | 17.00 | -2.14 | -0.491 | 1434 | 0039 | .2130 | 0094 | .0007 | | | 0.60 | 17.00 | -0.33 | -0.479 | 1445 | 0460 | .2108 | 0128 | 0137 | | | 0.60 | 17.00 | 1.39 | -0.441 | 1450 | 0854 | .2002 | 0134 | 0274 | | | 0.60 | 17.00 | 3.10 | -0.435 | 1536 | 1173 | .2037 | 0118 | 0367 | | | 0.60 | 17.00 | 4.82 | -0.434 | 1554 | 1375 | .2062 | 0137 | 0436 | | | 0.60 | 17.00 | 6.55 | -0.413 | 1586 | 1635 | .2004 | 0151 | 0499 | | | 0.60 | 17.00 | 8.27 | -0.403 | 1591 | 1977 | .2008 | 0173 | 0584 | | | 0.60 | 17.00 | 10.00 | -0.387 | 1519 | 2222 | .1960 | 0233 | 0710 | | Run | M M | α | β | c^{χ} | $c_{\underline{z}}$ | c_{Y} | C _m | $C_{\mathbf{n}}$ | c, | |-----|------|-------|-------|------------|---------------------|--------------|----------------|------------------|--------------| | 137 | 0.90 | 17.00 | -4.00 | 0.666 | 1572 | .0237 | 2072 | 01/0 | | | | 0.90 | 17.00 | -2.19 | | 1571 | 0053 | .2972 | 0168 | .0061 | | | 0.90 | 17.00 | -0.33 | | 1537 | 0501 | .2958
.2830 | 0146 | 0050 | | | 0.90 | 17.00 | 1.39 | | 1632 | 1220 | .2770 | 0153 | 0153 | | | 0.90 | 17.00 | 3.10 | | 1748 | 1676 | .2867 | 0187 | 0379 | | | 0.90 | 17.00 | 4.83 | | 1836 | 2115 | .2832 | 0223 | 0478 | | | 0.90 | 17.00 | 6.56 | -0.511 | 1812 | 2527 | .2801 | 0295
0341 | 0621 | | | 0.90 | 17.00 | 8.27 | -0.495 | 1833 | 2927 | .2709 | 0341 | 0695 | | | 0.90 | 17.00 | 10.04 | -0.499 | 1751 | 2953 | .2670 | 0391 | 0793
0882 | | | | | | | | | | | .0002 | | 138 | 1.50 | 17.00 | -4.13 | -0.610 | 0885 | 0470 | 7074 | | | | | 1.50 | 17,00 | -2.14 | -0.608 | 0938 | .0478 | .3274 | .0010 | .0166 | | | 1.50 | 17.00 | -0.43 | -0.589 | 0941 | .0003 | . 3354 | 0036 | 0023 | | | 1.50 | 17.00 | 1.28 | -0.570 | 0943 | 0400 | .3319 | 0077 | 0218 | | | 1.50 | 17.00 | 3.00 | -0,608 | 0863 | 1008
1399 | .3265 | 0083 | 0462 | | | 1.50 | 17.00 | 4.73 | -0.595 | 0882 | 1399
1819 | . 3425 | 0136 | 0634 | | | | | | 0.000 | .0002 | 1019 | . 3424 | 0199 | 0871 | | 139 | 0.60 | 12.03 | 0.00 | -0.903 | 1274 | 2224 | • | | | | | 0.60 | 13.90 | 0.00 | -0.888 | 1234 | 0994 | .1467 | 0329 | .0119 | | | 0.60 | 15.69 | 0.00 | -0.887 | 1260
1327 | 0703 | .1470 | 0265 | .0163 | | | 0.60 | 17.42 | 0.00 | -0.877 | 1327 | 0518 | .1512 | 0202 | .0151 | | | 0.60 | 19.15 | 0.00 | -0.867 | 1425 | 0362 | .1542 | 0147 | .0099 | | | 0.60 | 20.86 | 0.00 | -0.858 | 1452 | 0160 | .1569 | 0085 | .0094 | | | 0.60 | 22.58 | 0.00 | -0.843 | 1418 | 0076 | .1596 | 0049 | .0066 | | | 0.60 | 24.31 | 0.00 | -0.820 | 1358 | 0026 | .1594 | 0024 | .0028 | | | 0.60 | 26.02 | 0.00 | -0.800 | 1298 | .0205 | .1574 | .0038 | .0041 | | | | | | 0.000 | 1250 | .0283 | .1567 | .0082 | 0020 | | 140 | 0.90 | 12.02 | 0.00 | -1.173 | 1434 | 1025 | 2515 | | | | | 0.90 | 13.84 | 0.00 | -1.153 | 1434 | 1825 | . 2515 | 0430 | 0128 | | | 0.90 | 15.73 | 0.00 | -1.126 | 1344 | 1544 | .2508 | 0353 | 0109 | | | 0.90 | 17.64 | 0.00 | -1.101 | 1344 | 1282 | . 2498 | 0282 | 0117 | | | 0.90 | 19.44 | 0.00 | -1.071 | 1243 | 1004 | .2506 | 0208 | 0140 | | | 0.90 | 21.15 | | -1.071 | | 0605 | . 2465 | 0129 | 0105 | | | 0.90 | 22.98 | 0.00 | -1.020 | 1212
1276 | 0109 | . 2421 | 0033 | 0024 | | | 0.90 | 24.68 | 0.00 | -1.020 | | .0253 | . 2489 | .0048 | .0000 | | | 0.90 | 26.57 | | -0.980 | 1313 | .0571 | . 2555 | .0139 | .0017 | | | | | J. 00 | 0.300 | 1338 | .0845 | .2576 | .0209 | .0042 | | Run | M | α | β | c_{χ} | c_{z} | c_{Y} | C _m | C _n | C. | |-----|--|---|--|--|--|---|---|---|--| | 141 | 1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50 | 12.02
13.94
15.82
17.65
19.37
21.08
22.80
24.52
26.42 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | -1.202
-1.177
-1.147
-1.114
-1.082
-1.049
-1.018
-0.985
-0.942 | 0640
0685
0719
0716
0706
0662
0666
0699
0798 | 2583
2233
1878
1586
1264
0880
0517
0199
.0208 | .2884
.2900
.2899
.2903
.2920
.2958
.3027
.3106
.3163 | 0533
0433
0336
0257
0177
0102
0049
0015
.0048 | 0374
0372
0365
0354
0321
0265
0208
0159
0086 | | 142 | 0.60
0.60
0.60
0.60
0.60
0.60
0.60 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.00
-2.14
-0.32
1.44
3.19
4.93
6.69
8.44
10.12 | -0.898
-0.872
-0.854
-0.837
-0.856
-0.864
-0.871
-0.871 | 1869
1734
1591
1528
1507
1562
1496
1353
1242 | 0350
0327
0351
0707
1206
1259
1567
2149
2718 | .1735
.1596
.1552
.1533
.1556
.1591
.1642
.1652 | 0046
0084
0141
0273
0395
0451
0555
0698
0786 | 0322
0051
.0156
.0310
.0383
.0613
.0670
.0596 | | 143 | 0.90
0.90
0.90
0.90
0.90
0.90
0.90 | 17.00
17.00
17.00
17.00
17.00
17.00
17.00
17.00 | -4.06
-2.19
-0.36
1.39
3.15
4.89
6.65
8.39
10.10 | -1.169
-1.122
-1.079
-1.064
-1.042
-1.041
-1.043
-1.043 | 2028
1636
1330
1119
0949
0904
0843
0827
0891 | 0066
0505
0979
1406
1884
2245
2796
3441
4120 | .2755
.2586
.2444
.2383
.2248
.2232
.2237
.2245
.2305 |
.0049
0061
0213
0366
0508
0632
0808
0958
1109 | 0211
0155
0077
0003
.0037
.0149
.0206
.0155 | | 144 | 1.50
1.50
1.50
1.50
1.50 | 17.00
17.00
17.00
17.00
17.00
17.00 | -4.14
-2.19
-0.41
1.50
3.28
5.06 | -1.081
-1.101
-1.121
-1.121
-1.119
-1.125 | 1089
1000
0777
0615
0597 | .004506911501240832013911 | .2965
.2923
.2908
.2881
.2882
.2892 | .0080
0022
0233
0467
0658
0796 | 0097
0240
0333
0446
0579
0753 | | Run | M | α | β | c_{χ} | c_{Z} | c_{Y} | C _m | C _n | c. | |-----|------|---------------------|-------|------------------|----------------|--------------|----------------|----------------|----------------| | 145 | 0.60 | 11.89 | 0.00 | -0.946 | .1620 | 0108 | .0178 | 0264 | 0427 | | | 0.60 | 13.89 | 0.00 | | .1298 | | .0207 | 0259 | .0423
.0199 | | | 0.60 | 15.79 | 0.00 | | .0985 | | .0242 | 0239 | .0199 | | | 0.60 | 17.53 | 0.00 | -0.901 | .0750 | - | .0265 | 0215 | .0122 | | | 0.60 | 19.28 | 0.00 | -0.877 | .0397 | 0358 | .0280 | 0216 | .0174 | | | 0.60 | 21.00 | 0.00 | | .0146 | 0280 | .0315 | 0190 | .0166 | | | 0.60 | 22.75 | 0.00 | -0.842 | 0098 | 0289 | .0363 | 0173 | .0104 | | | 0.60 | 24.48 | 0.00 | -0.831 | 0326 | 0189 | .0452 | 0130 | .0104 | | | 0.60 | 26.28 | 0.00 | -0.816 | 0581 | 0150 | .0546 | 0109 | .0109 | | 146 | 0.90 | 11.79 | 0.00 | 1 216 | 2000 | | | | | | ~.• | 0.90 | 13.62 | 0.00 | -1.216 | .2009 | 0673 | .0465 | 0397 | .0247 | | | 0.90 | 15.70 | 0.00 | -1.178 | .1761 | 0873 | .0470 | 0417 | .0143 | | | 0.90 | 17.43 | 0.00 | -1.180
-1.191 | .1565 | 0894 | .0520 | 0410 | .0127 | | | 0.90 | 19.16 | 0.00 | -1.191 | .1334 | 0886 | .0602 | 0400 | .0172 | | | 0.90 | 20.89 | 0.00 | -1.166 | .1082 | 0870 | .0681 | 0391 | .0175 | | | 0.90 | 22.64 | 0.00 | -1.146 | .0503 | 0773 | .0737 | 0359 | .0201 | | | 0.90 | 24.38 | 0.00 | -1.124 | .0303 | 0769 | .0826 | 0344 | .0185 | | | 0.90 | 26.19 | 0.00 | -1.090 | 0242 | 0820
0855 | .0923 | 0317 | .0133 | | | | | | 11030 | .0242 | 0633 | .1006 | 0275 | .0065 | | 147 | 1.50 | 11.74 | 0.00 | -1.430 | .0525 | 2847 | . 2004 | 0644 | 0310 | | | 1.50 | 13.60 | 0.00 | -1.414 | .0246 | 2851 | .2043 | 0647 | 0310 | | | 1.50 | 15.42 | 0.00 | -1.399 | 0055 | 2868 | .2097 | 0647 | 0349 | | | 1.50 | 17.18 | 0.00 | -1.377 | 0354 | 2843 | .2148 | 0636 | 0349 | | | 1.50 | 18.93 | 0.00 | -1.352 | 0651 | 2828 | .2201 | 0615 | 0397 | | | 1.50 | 20.69 | 0.00 | -1.320 | 0999 | 2761 | . 2260 | 0574 | 0411 | | | 1.50 | 22.47 | 0.00 | -1.284 | 1364 | 2612 | .2323 | 0519 | 0414 | | | 1.50 | 24.22 | 0.00 | -1.244 | 1696 | 2467 | .2363 | 0462 | 0433 | | | 1.50 | 26.17 | 0.00 | -1.196 | 2034 | 2296 | .2377 | 0411 | 0454 | | 148 | 0.60 | 17.00 | -4.00 | 0 227 | 070- | | | | | | • | 0.60 | 17.00 | -2.11 | -0.923 | .0797 | 0047 | .0317 | 0057 | 0021 | | | 0.60 | 17.00 | -0.25 | -0.922
-0.914 | .0825 | 0292 | .0301 | 0142 | .0030 | | | 0.60 | 17.00 | 1.51 | -0.914 | .0832 | 0618 | .0293 | 0233 | .0056 | | | 0.60 | 17.00 | 3.27 | -0.902 | .0812 | 0748 | .0287 | 0289 | .0128 | | | 0.60 | 17.00 | 5.04 | -0.878 | .0882
.0907 | 0955 | .0253 | 0369 | .0220 | | | 0.60 | 17.00 | | -0.872 | .0907 | 1088 | .0249 | 0431 | .0288 | | | 0.60 | 17.00 | | -0.868 | .0923 | 1314 | .0251 | 0511 | .0329 | | | | <i>→</i> ∀ ∨ | 3.50 | 0.000 | .0334 | 1497 | .0268 | 0589 | .0385 | | Run | M | α | β | c_{χ} | c_{z} | c_{Y} | C _m | $c_{\mathbf{n}}$ | C. | |-----|------|-------|-------|------------|---------|---------|----------------|------------------|-------| | | | | | | | | | | | | 149 | 0.90 | 17.00 | -4.00 | -1.238 | .1236 | 0226 | .0696 | 0184 | .0047 | | | 0.90 | 17.00 | -2.04 | -1.216 | .1358 | 0593 | .0630 | 0300 | .0082 | | | 0.90 | 17.00 | -0.11 | -1.186 | .1453 | 0827 | .0574 | 0394 | .0150 | | | 0.90 | 17.00 | 1.61 | -1.172 | .1519 | 1007 | .0532 | 0474 | .0251 | | | 0.90 | 17.00 | 3.34 | -1.165 | .1564 | 1297 | .0548 | 0583 | .0295 | | | 0.90 | 17.00 | 5.07 | -1.152 | .1580 | 1598 | .0557 | 0690 | .0348 | | | 0.90 | 17.00 | 6.81 | -1.127 | .1562 | 1859 | .0578 | 0783 | .0387 | | | 0.90 | 17.00 | 8.54 | -1.120 | .1546 | 2136 | .0616 | 0879 | .0444 | 150 | 1.50 | 17.00 | -3.83 | -1.368 | 0207 | 1323 | .2064 | 0290 | 0201 | | | 1.50 | 17.00 | -1.95 | -1.378 | 0205 | 2017 | .2094 | 0447 | 0279 | | | 1.50 | 17.00 | -0.17 | -1.388 | 0203 | 2644 | .2122 | 0594 | 0342 | | | 1.50 | 17.00 | 1.74 | -1.395 | 0187 | 3271 | .2150 | 0745 | 0404 | | | 1.50 | 17.00 | 3.53 | -1.395 | 0154 | 3851 | .2174 | 0884 | 0466 | | | 1.50 | 17.00 | 5.32 | -1.391 | 0130 | 4393 | .2192 | 1020 | 0520 | | | 1.50 | 17.00 | 7.11 | -1.384 | 0107 | 4949 | .2209 | 1155 | 0587 | | | 1.50 | 17.00 | 8.89 | -1.375 | 0094 | 5508 | .2212 | 1284 | 0665 | | | 1.50 | 17.00 | 10.73 | -1.363 | 0068 | 5982 | .2210 | 1386 | 0752 | ## REFERENCES - 1. G. M. Stone, <u>Tests of a 0.10 Scale Ejection Seat in Proximity to a B-1 Fuselage Forebody in the Rockwell Trisonic Wind Tunnel, Test No. 1 (TWT-300)</u>, Rockwell International, B-1 Division, NA-76-549, July 1976. - 2. G. M. Stone, <u>Tests of a 0.10 Scale Ejection Seat in Proximity to a B-1</u> <u>Fuselage Forebody in the Rockwell Trisonic Wind Tunnel, Test No. 2 (TWT-310)</u>, Rockwell International, B-1 Division, NA-77-196, May 1977. - 3. G. M. Stone, <u>Trisonic Wind Tunnel</u>, <u>User's Manual</u>, Rockwell International, Los Angeles Division, NA-78-258, June 1978. - 4. G. R. Casteel, and A. F. Tweedie, <u>Predicted Escape System Performance for B-1 Aircraft No. 4 and Validation of Math Model Using Sted Test Data</u>, Rockwell International, B-1 Division, NA-78-856, November 1978. - 5. J. W. Brinkley, and J. T. Saaffer, <u>Dynamic Simulation Techniques in the Design of Escape Systems: Current Applications and Future Air Force Requirements</u>, Symposium of Biodynamic Models and Their Applications, AMRL TR-71-29, December 1971, AD# 739501.